EIS can be used to monitor these changes. In this review, we will cover the theory behind EIS, other impedance techniques, and how EIS can be used to monitor cell behavior and phenotype changes within cancerous cells.In order to improve the electrochemical performance of the NiCo2O4 material, Ni ions were partially substituted with Cu2+ ions having excellent reducing ability. All of the electrodes were fabricated by growing the Ni1-xCuxCo2O4 electrode spinel-structural active materials onto the graphite felt (GF). Five types of electrodes, NiCo2O4/GF, Ni0.875Cu0.125Co2O4/GF, Ni0.75Cu0.25Co2O4/GF, Ni0.625Cu0.375Co2O4/GF, and Ni0.5Cu0.5Co2O4/GF, were prepared for application to the oxygen evolution reaction (OER). https://www.selleckchem.com/products/geneticin-g418-sulfate.html As Cu2+ ions were substituted, the electrochemical performances of the NiCo2O4-based structures were improved, and eventually the OER activities were also greatly increased. In particular, the Ni0.75Cu0.25Co2O4/GF electrode exhibited the best OER activity in a 1.0 M KOH alkaline electrolyte the cell voltage required to reach a current density of 10 mA cm-2 was only 1.74 V (η = 509 mV), and a low Tafel slope of 119 mV dec-1 was obtained. X-ray photoelectron spectroscopy (XPS) analysis of Ni1-xCuxCo2O4/GF before and after OER revealed that oxygen vacancies are formed around active metals by the insertion of Cu ions, which act as OH-adsorption sites, resulting in high OER activity. Additionally, the stability of the Ni0.75Cu0.25Co2O4/GF electrode was demonstrated through 1000th repeated OER acceleration stability tests with a high faradaic efficiency of 94.3%.Excessive discharge of heavy metal ions will aggravate environment pollution and threaten human health. Thus, it is of significance to real-time detect metal ions and control discharge in the metallurgical wastewater. We developed an accurate and rapid approach based on the singular perturbation spectrum estimator and extreme gradient boosting (SPSE-XGBoost) algorithms to simultaneously determine multi-metal ion concentrations by UV-vis spectrometry. In the approach, the spectral data is expanded by multi-order derivative preprocessing, and then, the sensitive feature bands in each spectrum are extracted by feature importance (VI score) ranking. Subsequently, the SPSE-XGBoost model are trained to combine multi-derivative features and to predict ion concentrations. The experimental results indicate that the developed "Expand-Extract-Combine" strategy can not only overcome problems of background noise and spectral overlapping but also mine the deeper spectrum information by integrating important features. Moreover, the SPSE-XGBoost strategy utilizes the selected feature subset instead of the full-spectrum for calculation, which effectively improves the computing speed. The comparisons of different data processing methods are conducted. It outcomes that the proposed strategy outperforms other routine methods and can profoundly determine the concentrations of zinc, copper, cobalt, and nickel with the lowest RMSEP. Therefore, our developed approach can be implemented as a promising mean for real-time and on-line determination of multi-metal ion concentrations in zinc hydrometallurgy.In this paper, we study the time optimal control problem in a DC-DC buck converter in the underdamped oscillatory regime. In particular, we derive analytic expressions for the admissible regions in the state space, satisfying the condition that every point within the region is reachable in optimal time with a single switching action. We then make use of the general result to establish the minimum and maximum variation allowed to the load in two predefined design set-ups that fulfills the time optimal single switching criteria. Finally, we make use of numerical simulations to show the performance of the proposed control under changes in the reference voltage and load resistance.A microfluidic device is presented for the continuous separation of red blood cells (RBCs) and white blood cells (WBCs) in a label-free manner based on negative dielectrophoresis (n-DEP). An alteration of the electric field, generated by pairs of slanted electrodes (separators) that is fabricated by covering parts of single slanted electrodes with an insulating layer is used to separate cells by their sizes. The repulsive force of n-DEP formed by slanted electrodes prepared on both the top and bottom substrates led to the deflection of the cell flow in lateral directions. The presence of gaps covered with an insulating layer for the electric field on the electrodes allows the passing of RBCs through gaps, while relatively large WBCs (cultured cultured human acute monocytic leukemia cell line (THP-1 cells)) flowed along the slanted separator without passing through the gaps and arrived at an edge in the channel. The passage efficiency for RBCs through the gaps and the arrival efficiency for THP-1 cells to the upper edge in the channel were estimated and found to be 91% and 93%, respectively.Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.