https://www.selleckchem.com/products/methylene-blue-trihydrate.html This set of techniques was essential to reveal the polymer motions and structural features in nanocomposite hydrogels under temperature stimuli, demonstrating its potential use as experimental guideline to study multicomponent nanocomposites with diverse functionalities and dynamic properties.Efficient hybrid plasmonic-photonic metasurfaces that simultaneously take advantage of the potential of both pure metallic and all-dielectric nanoantennas are identified as an emerging technology in flat optics. Nevertheless, postfabrication tunable hybrid metasurfaces are still elusive. Here, we present a reconfigurable hybrid metasurface platform by incorporating the phase-change material Ge2Sb2Te5 (GST) into metal-dielectric meta-atoms for active and nonvolatile tuning of properties of light. We systematically design a reduced-dimension meta-atom, which selectively controls the hybrid plasmonic-photonic resonances of the metasurface via the dynamic change of optical constants of GST without compromising the scattering efficiency. As a proof-of-concept, we experimentally demonstrate two tunable metasurfaces that control the amplitude (with relative modulation depth as high as ≈80%) or phase (with tunability >230°) of incident light promising for high-contrast optical switching and efficient anomalous to specular beam deflection, respectively. Our findings further substantiate dynamic hybrid metasurfaces as compelling candidates for next-generation reprogrammable meta-optics.The stabilization method is widely used to theoretically characterize temporary anions and other systems displaying resonances. In this approach, information about a metastable state is encoded in the interaction of a diabatic discrete state and discretized continuum solutions, the energy of which are varied by scaling the extent of the basis set. In this work, we identify the aspects of the coupling between the discrete state and the disc