https://www.selleckchem.com/products/chir-99021-ct99021-hcl.html Piwi proteins are normally restricted in germ cells to suppress transposons through associations with Piwi-interacting RNAs (piRNAs), but they are also frequently activated in many types of human cancers. A great puzzle is the lack of significant induction of corresponding piRNAs in cancer cells, as we document here in human pancreatic ductal adenocarcinomas (PDACs), which implies that such germline-specific proteins are somehow hijacked to promote tumorigenesis through a different mode of action. Here, we show that in the absence of piRNAs, human PIWIL1 in PDAC functions as an oncoprotein by activating the anaphase promoting complex/cyclosome (APC/C) E3 complex, which then targets a critical cell adhesion-related protein, Pinin, to enhance PDAC metastasis. This is in contrast to piRNA-dependent PIWIL1 ubiquitination and removal by APC/C during late spermiogenesis. These findings unveil a piRNA-dependent mechanism to switch PIWIL1 from a substrate in spermatids to a co-activator of APC/C in human cancer cells.Although the transition metal copper (Cu) is an essential nutrient that is conventionally viewed as a static cofactor within enzyme active sites, a non-traditional role for Cu as a modulator of kinase signalling is emerging. Here, we found that Cu is required for the activity of the autophagic kinases ULK1 and ULK2 (ULK1/2) through a direct Cu-ULK1/2 interaction. Genetic loss of the Cu transporter Ctr1 or mutations in ULK1 that disrupt the binding of Cu reduced ULK1/2-dependent signalling and the formation of autophagosome complexes. Increased levels of intracellular Cu are associated with starvation-induced autophagy and are sufficient to enhance ULK1 kinase activity and, in turn, autophagic flux. The growth and survival of lung tumours driven by KRASG12D is diminished in the absence of Ctr1, is dependent on ULK1 Cu binding and is associated with reduced levels of autophagy and signalling. These