The development of in situ methods for the analysis and visualization of enzyme activity is of paramount importance in drug discovery, research, and development. In this work, the functionalized and array patterned indium tin oxide (ITO) glass slides were fabricated by non-covalent immobilization of amphipathic phospholipid-tagged peptides encompassing the thrombin cleavage site on steric acid-modified ITO slides. The fabricated peptide arrays provide 60 spots per slide, and are compatible with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) measurement, free matrix peak interference, and tolerance to repeated aqueous washing. The peptide arrays were used for the investigation of thrombin activity and screening for its potential inhibitors. The thrombin activity and its Michaelis-Menten constant (Km) for immobilized peptide substrate was determined using developed MALDI MS peptide array. To investigate the applicability and effectiveness of peptide arrays, the anti-thrombin activity of grape seed proanthocyanidins with different degrees of polymerization (DP) was monitored and visualized. MALDI MS imaging results showed that the fractions of proanthocyanidins with the mean DP of 4.61-6.82 had good thrombin inhibitory activity and their half-maximal inhibitory concentration (IC50) were below 10 μg/mL. Therefore, the developed peptide array is a reliable platform for the discovery of natural thrombin inhibitors.Colorectal cancer (CRC), a highly heterogeneous genetic disease, is currently the second leading cause of cancer-related deaths worldwide. This malignant cancer is typically preceded by the development of precancerous lesions, which are challenging to distinguish their subtle morphologic changes. Molecular-based fluorescence imaging can effectively identify lesion targets to enhance image contrast and improve the detection of early neoplasia comparing to conventional wide-light screening endoscopy. C-Met has been identified as overexpressed in CRC advanced stage and has been suggested as a validated potential theranostic target. Herein, we developed a new small molecular fluorescence probe, namely Crizotinib-PEG4-MPA, specifically binds to c-Met in CRC cells and colitis-associated cancer adenoma. In vitro binding studies confirmed the specificity and selectively of Crizotinib-PEG4-MPA against c-Met, the corresponding apparent equilibrium dissociation constants (Kd) was 3.86 μM for Crizotinib-PEG4-MPA. Additionally, the probe was carried out to c-Met positive tumor-bearing mice in vivo to explore the diagnostic potential clinical value, the method used a randomized block design to cluster mice into groups and found the tumor/normal signal ratio value up to 4.23 (95% confidence interval (CI) 4.07-4.39) at 6 h. More importantly, Crizotinib-PEG4-MPA was used to detect the occurrence of the colon adenoma and the in vivo imaging results showed the mean fluorescence intensity of the CAC colon is significantly higher than that in the normal group (P less then 0.001). Furthermore, the immunofluorescence signals of biopsies samples demonstrated the probe indeed targets the c-Met and possesses the property to distinguish colon adenoma from normal colon tissue. Altogether, this novel fluorescence probe, with excellent C-met-targeting ability, has a substantial potential to serve as a widely available in vivo tracer for the early diagnosis and monitoring of colorectal cancer.A colorimetric immunosensor was developed for the detection of tumor-associated anti-p53 autoantibodies (anti-p53aAbs). The immunosensor platform was prepared by immobilizing human-protein (p53Ag) onto a high binding 96-well plate. The immunoassay was based on the immunometric sandwich protocol, and protein G functionalized nanomagnet-silica nanoparticles decorated with Au@Pd (Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG) was used as the detection nanobioprobe. The Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG exhibited a high binding affinity for the captured anti-p53aAbs and high catalytic performance towards the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The oxidation of TMB resulted in significant color change and a UV-vis absorption signal. The detection was achieved by measuring the changes in UV-Vis absorption as the concentrations of anti-p53aAbs changed. The apparent binding affinity (KD) between the p53aAbs and Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG was 35.2 ng mL-1. The plot of change in the absorption intensity against the logarithm of anti-p53aAbs was linear within 1.0-500.0 ng mL-1 with a correlation coefficient (R2) of 0.98. The detection limit (LoD) using 3σ was calculated to be 15 pg mL-1, which is lower than the conventional HRP-label based colorimetric immunoassay. The real sample detection was investigated using the serum recovery method. The recovery of the anti-p53aAbs ranges from 98.5% to 105.7%, demonstrating its potential for practical applications.In the present study, an innovative and highly efficient near-infrared hyperspectral imaging (NIR-HSI) method is proposed to provide spectral maps able to reveal collagen distribution in large-size bones, also offering semi-quantitative estimations. https://www.selleckchem.com/products/cbl0137-cbl-0137.html A recently introduced method for the construction of chemical maps, based on Normalized Difference Images (NDI), is declined in an innovative approach, through the exploitation of the NDI values computed for each pixel of the hyperspectral image to localize collagen and to extract information on its content by a direct comparison with known reference samples. The developed approach addresses an urgent issue of the analytical chemistry applied to bioarcheology researches, which rely on well-preserved collagen in bones to obtain key information on chronology, paleoecology and taxonomy. Indeed, the high demand for large-sample datasets and the consequent application of a wide variety of destructive analytical methods led to the considerable destruction of precious bone samples. NIR-HSI pre-screening allows researchers to properly select the sampling points for subsequent specific analyses, to minimize costs and time and to preserve integrity of archaeological bones (which are available in a very limited amount), providing further opportunities to understand our past.