https://www.selleckchem.com/products/terephthalic-acid.html The LLOQs for PBMC analysis were 2.5 picogram equivalents per microgram (pgEq/μg) DNA and 0.22 pgEq/μg RNA, and for BM analysis were 1.7 pgEq/μg DNA and 0.22 pgEq/μg RNA. A linear relationship (i.e., ∼10-fold) was established of radioactive dose from 14C-Aza 17 nCi/mouse to 188 nCi/mouse and AMS response (i.e., 14C/12C ratio ranging from 2.45 × 10-11 to 2.50 × 10-10), as Aza was incorporated into DNA in mouse BM. The current method enables the direct measurement of Aza incorporation into DNA and RNA from patient PBMCs and BM to provide dosing optimization, and to assess target engagement with as little as ∼5 mL whole blood and ∼3 mL of BM from patients.Previously, our cooperative team confirmed the chemical composition and anti-rheumatoid arthritis (RA) efficacy of Juanbi-Tang (JBT), a clinically and historically used traditional Chinese medicine formula, in two model animals. In this study, we developed an in vivo-in silico strategy to elucidate the anti-RA material basis and mechanism of JBT. With the aid of high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF), the metabolic profiles were investigated in normal and collagen-induced arthritis RA rats following oral administration of JBT. Based on the absorbed constituents in RA rats, network pharmacology was employed to predict the anti-RA mechanisms, followed by molecular docking validation. Consequently, there were 18 absorbed compounds with 6 chemical structures, which were absolutely identified by matching with standard compounds in plasma, and 17 generated metabolites involved of 7 biotransformation pathways, including glucuronidation, sulfation, hydroxylation, deglycosylation, methylation, taurine, and glycine conjugation. Moreover, RA disease affected the absorption and metabolism of the constituents in JBT, given the undetected 2 absorbed compounds and 4 metabolites in RA rats. The analysis of