https://www.selleckchem.com/products/ms-275.html The excitation and propagation of amplified spontaneous emission (ASE) along these active waveguides are experimentally demonstrated and numerically analyzed. The findings of this work offer possibilities for the realization of ultra-thin electrically driven colloidal laser devices, providing critical advantages including single-mode lasing and high electrical conduction.Heavy fuel oil ash (HFOA) is generated as an industrial waste material during the combustion of heavy fuel oil in power/desalination plants. With increasing energy demands, a significant volume of HFOA is generated. It is generally disposed of in landfills, causing environmental pollution, as it contains several toxic elements. Recently, efforts were made towards developing strategies for reusing industrial waste materials and creating value-added products from the waste materials. Despite significant information available in the literature on the utilization of HFOA, there is still a need for a thorough and systematic review on the characterization and utilization of HFOA in various applications. Consequently, this paper aims to present a critical review of the literature on HFOA generation, its chemical composition, physical properties, morphology, and applications. It is encouraging to note that HFOA has been used in several potential applications, such as the preparation of activated carbon and carbon nanotubes, metal recovery, environmental pollutant removal, polymer composites and construction materials, etc. However, the development of several value-added materials utilizing HFOA and its applications in other areas such as coatings, cathodic protection systems, and phase change materialswould emerge as a new topic of research. It is expected that this review will act as a precursor for further research on the use of HFOA in industrial applications. Since the use of HFOA will lead to environmental, economic, and technical benefits, research in t