Raney nickel (R-Ni) is a cost-effective hydrogenation catalyst, and nascent hydrogen (Nas-H2) generated in situ on the cathode trends to more reactive than commercial hydrogen (Com-H2). In the present work, nitrate and nitrite (NOX-) reduction via R-Ni/Nas-H2 catalytic system was investigated. The results show that hydrogenation of NOX- (C0 = 3.0 mM) follows pseudo-first-order reaction kinetics with kinetic constants of 5.18 × 10-2 min-1 (NO3-) and 6.46 × 10-2 min-1 (NO2-). The saturation demand for Nas-H2 is only 0.8 mL min-1 at a fixed R-Ni dosage of 1.0 g L-1. The experiments reveal that both Nas-H2 and hydrogen adatoms (Hads∗) can drive the reduction of NOX-. The improved reduction ratios of NOX- are attributed to two aspects (1) the micro/nano-sized Nas-H2 bubbles exhibits increased reactivity due to the fine dispersion of the hydrogen molecules; (2) the alkaline environment formed by the cathode positively maintain R-Ni activity, thus, Nas-H2 bubbles were more readily activated to generate powerful Hads∗. The results give insight into NOX- hydrogenation via introducing fine hydrogen resource, and can develop an efficient catalytic hydrogenation technique without noble metals.With the rapid rate of industrialization, the emission of effluents represents a serious threat to aquatic living organisms and the environment. Semiconductor-mediated photocatalysis has been highlighted as the most attractive technology for the elimination of pollutants. In this connection, bandgap-tuned ultra-small SnO2-nanoparticle-decorated 2D-Bi2WO6 nanoplates were prepared via the hydrothermal method. The tuning of the bandgap was altered by the thermal annealing procedure. https://www.selleckchem.com/products/quinine-dihydrochloride.html Moreover, we investigated the influence of different bandgaps of SnO2 on the anchoring of the 2D-Bi2WO6 nanoplates and studied their photocatalytic activity through the degradation of Rhodamine B under visible light irradiation. The ultra-small SnO2 nanoparticles were highly anchored on the surface of the 2D-Bi2WO6 plates, which resulted in more photon harvesting, improved charge separation, the transfer of photoinduced charge carriers, and the alteration of band positions towards the visible region of light. Furthermore, the anchored SnO2 nanoparticles improved the performance of the photocatalytic activity of 2D-Bi2WO6 nanoplates by more than 2.7 times.A lab-scale anaerobic-anoxic-oxic system was used to investigate the nitrogen removal mechanism under low dissolved oxygen (DO) conditions. When DO was decreased from 2 to 0.5 mg L-1, chemical oxygen demand (COD) and NH4+ removals were not influenced, while total nitrogen removal increased from 69% to 79%. Further batch tests indicated that both the specific nitrification rate and denitrification rate greatly increased under low DO conditions. When DO was decreased from 2 to 0.5 mg L-1, the oxygen half saturation constant value for ammonia oxidizing bacteria (AOB) decreased from 0.39 to 0.29 mg-O2 L-1, and for nitrite oxidizing bacteria (NOB), it reduced from 0.29 to 0.09 mg-O2 L-1. Correspondingly, the observed yield coefficients increased from 0.05 to 0.10 mg-cell mg-1-N for AOB, and from 0.02 to 0.06 mg-cell mg-1-N for NOB. High-throughput sequencing revealed that the relative abundances of AOB increased from 6.13% to 6.54%, Nitrospira-like NOB increased from 3.67% to 6.50%, and denitrifiers increased from 2.84% to 7.04%. Improved simultaneous nitrification and denitrification under low DO conditions contributed to the enhanced nitrogen removal.Honey bees provision glandular secretions in the form of royal jelly as larval nourishment to developing queens. Exposure to chemicals and nutritional conditions can influence queen development and thus impact colony fitness. Previous research reports that royal jelly remains pesticide-free during colony-level exposure and that chemical residues are buffered by the nurse bees. However, the impacts of pesticides can also manifest in quality and quantity of royal jelly produced by nurse bees. Here, we tested how colony exposure to a multi-pesticide pollen treatment influences the amount of royal jelly provisioned per queen and the additional impacts on royal jelly nutritional quality. We observed differences in the metabolome, proteome, and phytosterol compositions of royal jelly synthesized by nurse bees from multi-pesticide exposed colonies, including significant reductions of key nutrients such as 24-methylenecholesterol, major royal jelly proteins, and 10-hydroxy-2-decenoic acid. Additionally, quantity of royal jelly provisioned per queen was lower in colonies exposed to pesticides, but this effect was colony-dependent. Pesticide treatment had a greater impact on royal jelly nutritional composition than the weight of royal jelly provisioned per queen cell. These novel findings highlight the indirect effects of pesticide exposure on queen developmental nutrition and allude to social consequences of nurse bee glandular degeneration.In this study, the toxic effects of silver oxide and silver carbonate doped TiO2 nanoparticles (Ag2O-TiO2 NPs and Ag2CO3-TiO2NPs), TiO2 nanoparticles (TiO2 NPs), and bulk TiO2 on gene expression, lipid peroxidation, genotoxicity, and histological alterations in zebrafish (Danio rerio) was assessed. The physicochemical properties of the synthesized nanoparticles were evaluated by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), diffuse reflectance spectroscopy (DRS), dynamic light scattering (DLS), and Zeta potential analyses. TiO2NPs after doping with Ag showed shift to higher wavelengths and decrease of band gap energy. Also, remarkable reduction in the size of Ag-doped TiO2NPs in comparison with the TiO2 NPs was observed. According to our results, acute toxicity increased in the order of bulk TiO2 less then TiO2 NPs less then Ag2O-TiO2NPs less then Ag2CO3-TiO2NPs, respectively. Results of sub-lethal experiments after 30 days of exposure, showed higher expression of Gpx, Hsp70, Ucp-2, and Bax genes, and lower expression of Bcl-2 gene in Ag-doped TiO2NPs than pure TiO2 particles (TiO2 NPs and bulk TiO2) treatments (p less then 0.05). However, the mRNA levels of SOD and CAT genes were significantly higher in pure TiO2 particles than doped TiO2NPs (p less then 0.05). Moreover, levels of malondialdehyde, abnormalities of peripheral blood cells and severity of histological lesions in liver, gill, intestine and kidney tissues were more evident in Ag-dopedTiO2 NPs than pure TiO2 particles. It can be concluded that Ag doping of TiO2 NPs significantly increased their toxicity and resulted in more histological lesions, apoptosis and oxidative stress than pure TiO2 particles in adult zebrafish.