Central nervous system (CNS) malignancies are associated with poor prognosis, as well as exceptional morbidity and mortality, likely as a result of low rates of early diagnosis and limited knowledge of the tumor growth and resistance mechanisms, dissemination, and evolution in the CNS. Monitoring patients with CNS malignancies for treatment response and tumor recurrence can be challenging because of the difficulty and risks of brain biopsies and the low specificity and sensitivity of the less invasive methodologies that are currently available. Therefore, there is an urgent need to detect and validate reliable and minimally invasive biomarkers for CNS tumors that can be used separately or in combination with current clinical practices. The circulating tumor DNA (ctDNA) of cerebrospinal fluid (CSF) samples can outline the genetic landscape of entire CNS tumors effectively and is a promising, suitable biomarker, though its role in managing CNS malignancies has not been studied extensively. This review summarizes recent studies that explore the diagnostic, prognostic, and predictive roles of CSF-ctDNA as a liquid biopsy with primary and metastatic CNS malignancies. © 2020 Yan et al.Background Few screening markers for malignant transformation in borderline ovarian tumors (BOT) have been clearly established. The kinase noncatalytic C-lobe domain containing 1 (KNDC1), a brain-specific Ras guanine nucleotide exchange factor, negatively regulates dendrite growth. However, the biological role and underlying mechanism of KNDC1 in human cancers, including ovarian cancer (OC), remain unknown. Methods Gene chip screening was used to detect the expression of KNDC1 mRNA in normal ovarian tissues, BOT tissues, and OC tissues. And results were further validated by RT-qPCR, Western blotting and immunohistochemistry. KNDC1 overexpression and knockdown ovarian cancer cells were established to study the possible pathways that KNDC1 was involved. https://www.selleckchem.com/products/guanosine.html The effects of KNDC1 on the malignant behaviors of ovarian tumors were also investigated both in vitro and in vivo. Results We observed that the expression of KNDC1 mRNA and KNDC1 protein in OC was significantly downregulated compared with BOT. Subsequent investigation revealed that knockdown of KNDC1 enhanced the proliferation of ovarian cancer cells in vitro via induction of ERK1/2 phosphorylation, whereas reinforcing the expression of KNDC1 attenuated the ERK1/2 activity. Similarly, knockdown of KNDC1 also promoted cell proliferation in vivo. Survival analysis showed that lower KNDC1 predicted a poor progression-free survival (PFS) for patients. Conclusion Collectively, we conclude that KNDC1 might function as a tumor suppressor in ovarian tumors, inhibiting the proliferation of ovarian cells by suppressing ERK1/2 activity and hindering the malignant transformation of BOT. © 2020 Yu et al.Introduction Prostate cancer (PC) is the second greatest cause of cancer deaths globally. PC presents a poor prognosis once it metastasizes. There is considerable proof of vital epithelial-mesenchymal transition (EMT) functionality in PC metastasis. Previous studies revealed that melanophilin (MLPH) is associated with PC; however, its role in PC remains poorly understood. Methods Bioinformatics analyses were performed. The cellular responses to MLPH knockdown were examined in HCC cell lines via wound healing assay, migration and invasion assay, Western blotting. Results Analysis of the PROGgeneV2 database revealed that high MLPH expression might indicate poor overall survival. MLPH knockdown reduced PC cell migration, proliferation, and invasion. MLPH downregulation in vivo resulted in a lower growth rate and fewer metastatic nodules in lung tissues. Furthermore, MLPH knockdown recovered downregulated expression of the mesenchymal marker N-cadherin and the epithelial marker E-cadherin following a decrease in β-catenin. Conclusion These results indicate that progression of PC is stimulated via MLPH-dependent initiation of the EMT. © 2020 Zhang et al.Purpose A long noncoding RNA called small nucleolar RNA host gene 7 (SNHG7) is known to be a key regulator of biological processes in multiple human cancer types. In this study, our aims were to determine the expression status of SNHG7 in cervical cancer, to figure out the detailed roles of SNHG7 in cervical cancer cells, and to identify the mechanism underlying the activity of SNHG7 in cervical cancer. Methods Reverse-transcription quantitative PCR was performed to measure SNHG7 expression in cervical cancer. A Cell Counting Kit-8 assay, flow-cytometric analysis, cell migration and invasion assays, and a tumor xenograft experiment were conducted to respectively determine the effects of SNHG7 on cervical cancer cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. Results SNHG7 was found to be markedly upregulated in cervical cancer tissues and cell lines. Higher SNHG7 expression significantly correlated with FIGO stage, lymph node metastasis, the depth of cervical invasionl.The central nervous system (CNS) is regarded as an immune privileged environment; however, changes in the neuroimmunology paradigm have led to an increased interest in systematic immunotherapy in lung cancer therapy. The presence of the lymphatic system in the CNS as well as the physiological and biochemical changes in the blood-brain barrier in the tumor microenvironment suggests that immunocytes are fully capable of entering and exiting the CNS. Emerging clinical data suggest that inhibitors of programmed death receptor-1/programmed death ligand 1 (PD-1/PD-L1) can stimulate surrounding T cells and thus have antitumor effects in the CNS. For example, PD-1 antibody (pembrolizumab) monotherapy has displayed a 20-30% encephalic response rate in patients with brain metastases from malignant melanoma or non-small cell lung cancer. Combined application of nivolumab and ipilimumab anti-PD-1 and anti-cytotoxic T-lymphocyte-associated protein 4 showed an encephalic response rate of 55% in patients with brain metastases of melanoma. Further evidence is required to verify these response rates and identify the mechanisms of curative effects and drug tolerance. While regional treatments such as whole-brain radiosurgery, stereotactic radiosurgery, and brain surgery remain the mainstream, PD-1/PD-L1 inhibitors display potential decreased neurotoxic effects. To date, five drugs have been approved for use in patients with encephalic metastases of lung carcinoma the anti-PD-1 drugs, pembrolizumab and nivolumab, and the anti-PD-L1 agents, atezolizumab, durvalumab, and avelumab. In recent years, clinical trials of inhibitors in combination with other drugs to treat brain metastasis have also emerged. This review summarizes the biological principles of PD-1/PD-L1 immunotherapy for brain metastasis of lung cancer, as well as ongoing clinical trials to explore unmet needs. © 2020 Wang et al.