https://www.selleckchem.com/products/sf2312.html 70 to 1.07 and with upper limbs, spine and total body BMC ranged from 1.84 to 1.30. The pooled effect size for the association of lower limbs muscular strength with lower limbs, spine and total body BMD ranged from 0.54 to 0.88 and with lower limbs, spine and total body BMC ranged between 0.81 and 0.71. All reported pooled effect size estimates were statistically significant. CONCLUSION This systematic review and meta-analysis supports that muscular strength should be considered as a useful skeletal health marker during development and a target outcome for interventions aimed at improving bone health.Self-control has been shown to be linked with being cooperative and successful in humans and with the g-factor in chimpanzees. As such, it is likely to play an important role in all forms of problem-solving. Self-control, however, does not just vary across individuals but seems also to be dependent on the ecological niche of the respective species. With dogs having been selected to live in the human environment, several domestication hypotheses have predicted that dogs are better at self-control and thus more tolerant of longer delays than wolves. Here we set out to test this prediction by comparing dogs' and wolves' self-control abilities using a delay of gratification task where the animals had to wait for a predefined delay duration to exchange a low-quality reward for a high-quality reward. We found that in our task, dogs outperformed the wolves waiting an average of 66 s vs. 24 s in the wolves. Food quality did not influence how long the animals waited for the better reward. However, dogs performed overall better in motivation trials than the wolves, although the dogs' performance in those trials was dependent on the duration of the delays in the test trials, whereas this was not the case for the wolves. Overall, the data suggest that selection by humans for traits influencing self-control rather than ecological fact