https://www.selleckchem.com/products/alc-0159.html Cytochrome P450 monooxygenases (CYP450s) play crucial roles in the regulation of plant growth and response to abiotic stress. However, their functions in woody trees are still largely unknown. Previously, we reported that expression of the rice cytochrome P450 monooxygenase gene OsCYP714D1 increased gibberellic acid (GA) accumulation and shoot growth in transgenic poplar. In this work, we demonstrate that expression of OsCYP714D1 improved the salt tolerance of transgenic poplar plants. Compared to wild type, plant height and K+ content were significantly higher, whereas plant growth inhibition and Na+ content were significantly lower, in transgenic plants grown under high salt stress condition. Transcriptomic analyses revealed that OsCYP714D1 expression up-regulated the expressions of GA biosynthesis, signaling and stress responsive genes in transgenic plants under both normal and high salt stress conditions. Further gene ontology (GO) analyses indicated that genes involved in plant hormone and ion metabolic activities were significantly enriched in transgenic plants. Our findings imply that OsCYP714D1 participated in the regulation of both shoot growth and salt resistance through regulating gibberellin and ion homeostasis in transgenic poplar, and it can be used as a candidate gene for the engineering of new tree varieties with improved biomass production and salt stress resistance.Water-deficit stress is the most important abiotic stress restricting plant growth, development and yield. The effects of this stress, however, depend on genotypes, among other factors. This study assembles morpho-physiological and metabolic approaches to assess hormonal and metabolic profile changes, upon water-deficit stress, in the shoot and roots of two contrasting sunflower inbred lines, B59 (water-deficit stress sensitive) and B71 (water-deficit stress tolerant). The analyses were carried out using mass spectrometry and performing