https://www.selleckchem.com/products/glafenine.html We investigate spin dynamics of microstates in artificial spin ice (ASI) in Ni_81Fe_19 nanomagnets arranged in an interconnected kagome lattice using microfocus Brillouin light scattering, broadband ferromagnetic resonance, magnetic force microscopy, x-ray photoemission electron microscopy, and simulations. We experimentally reconfigure microstates in ASI using a 2D vector field protocol and apply microwave-assisted switching to intentionally trigger reversal. Our work is key for the creation of avalanches inside the kagome ASI and reprogrammable magnonics based on ASIs.The backreaction of dispersed rigid fibers to turbulence is analyzed by means of a state-of-the-art fully coupled immersed boundary method. The following universal scenario is identified turbulence at large scales looses a consistent part of its kinetic energy (via a Darcy friction term), which partially reappears at small scales where a new range of energy-containing scales does emerge. Large-scale mixing is thus depleted in favor of a new mixing mechanism arising at the smallest scales. Anchored fibers cause the same backreaction to turbulence as moving fibers of large inertia. Our results thus provide a link between two apparently separated realms the one of porous media and the one of suspension dynamics.The NV-NMR spectrometer is a promising candidate for detection of NMR signals at the nanoscale. Field inhomogeneities, however, are a major source of noise that limits spectral resolution in state of the art NV-NMR experiments and constitutes a major bottleneck in the development of nanoscale NMR. Here we propose, a route in which this limitation could be circumvented in NV-NMR spectrometer experiments, by utilizing the nanometric scale and the quantumness of the detector.A recently modified method to enable low-energy nuclear scattering results to be extracted from the discrete energy levels of the target-projectile clusters confined by harmoni