https://www.selleckchem.com/products/tp-0903.html It was found that the Young's moduli of the pectin nanofibers were improved to 19.13 MPa by the addition of Cu-based MOFs. Moreover, nanocomposite pectin nanofibers were found to be antibacterial and biocompatible. These results demonstrate that MOF-contained pectin nanofibers are promising for biomedical applications.As a promising biodegradable resin, poly (butylene succinate) (PBS) is often blended with starch to reduce the cost. In this paper, 1-buyl-3-methylimidazolium halide pre-plasticized corn starch (CS) was blended with PBS to prepare PBS/corn starch blend material modified by ionic liquid (PBS/CS-IL). Ionic liquid (IL) acted as plasticizer and compatibilizer, and the effects of 1-butyl-3-methylimidazolium halide with different halogen anion on PBS/Starch blends were explored. The effects of IL on the structure and tensile property of PBS/Starch blends were evaluated by FTIR, SEM, DSC, TGA and XRD, respectively. Test results showed that the addition of IL significantly reduced the crystallinity of PBS/Starch blends, and the size of starch particles in the PBS matrix was also effectively reduced. IL also acted as a compatibilizer of starch and PBS, and induced the morphology of the blends to change from "sea-island" structure to homogeneous phase. The results of the tensile test showed that compared with the PBS/Starch blend without IL, the elongation at break of PBS/CS-IL increased from 22% to 93%. This study provided a simple and feasible method for the preparation of low-cost PBS bio-composite materials, and provided theoretical support for future industrial production.Ursolic acid (UA) is a naturally occurring triterpene that has been investigated for its antitumor activity. However, its lipophilic character hinders its oral bioavailability, and therapeutic application. To overcome these limitations, chitosan (CS) modified poly (lactic acid) (PLA) nanoparticles containing UA were developed, characterized