Excessive gestational weight gain contributed more than prepregnancy obesity in Whites (PAF 32.9%, 95% CI [30.3-35.5%] and 16.6%, 95% CI [15.3-17.9%], respectively, for excessive gestational weight gain and prepregnancy obesity) and in Asians (PAF 32.1%, 95% CI [27.2-36.7%] and 11.8%, 95% CI [9.5-14.1%], respectively, for excessive gestational weight gain and prepregnancy obesity). Prepregnancy obesity (PAF 22.8%, 95% CI [17.1-28.1%]) and excessive gestational weight gain (PAF 20.1%, 95% CI [4.7-33.0%]) contributed to LGA neonates almost the same in Blacks. CONCLUSIONS Excessive gestational weight gain contributed more to LGA neonates than prepregnancy obesity in Whites and Asians, while there was no difference between excessive gestational weight gain and prepregnancy obesity in their contributions to the LGA neonates in Blacks. The differences are mostly driven by the differential prevalence of the two risk factors across racial groups.BACKGROUND/OBJECTIVES Obesity is associated with reduced neurocognitive performance. Individuals with obesity show decreased activation in the left dorsolateral prefrontal cortex (DLPFC), a key brain region relevant to the regulation of eating behavior. Transcranial direct current stimulation (tDCS) has emerged as a potential technique to correct these abnormalities. However, there is limited information to date, particularly in clinical settings and regarding long-term effects of tDCS. This study aimed to investigate the effects of DLPFC-targeted tDCS in young women with obesity. SUBJECT/METHODS Randomized, double-blind, sham-controlled parallel-design clinical trial conducted in 38 women, aged 20-40 years, with BMI 30-35 kg/m2. STUDY DESIGN Phase I target engagement (immediate effects of tDCS on working memory performance), Phase II tDCS only (ten sessions, 2 weeks), Phase III tDCS + hypocaloric diet (six sessions, 30% energy intake reduction, 2 weeks, inpatient), Phase IV follow-up at 1, 3, and 6 months. PRIMARY OUTCOME change in body weight. https://www.selleckchem.com/products/mlt-748.html SECONDARY OUTCOMES change in eating behavior and appetite. Additional analyses effect of Catechol-O-methyl transferase (COMT) gene variability. Data were analyzed as linear mixed models. RESULTS There was no group difference in change in body weight during the tDCS intervention. At follow-up, the active group lost less weight than the sham group. In addition, the active group regained weight at 6-month follow-up, compared with sham. Genetic analysis indicated that COMT Met noncarriers were the subgroup that accounted for this paradoxical response in the active group. CONCLUSION Our results suggest that in young women with class I obesity, tDCS targeted to the DLPFC does not facilitate weight loss. Indeed, we found indications that tDCS could have a paradoxical effect in this population, possibly connected with individual differences in dopamine availability. Future studies are needed to confirm these findings.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Emerging water quality guidelines and regulations require the absence of somatic coliphages in 100 mL of water, yet the efficiency of standardized methods to test this volume of sample is questionable. A recently described procedure, Bluephage, using a modified E. coli host strain, overcomes some of the methodological limitations of standardized methods. In a maximum of 6.5 hours (2.5 hours for pre-growing the host strain and 4 hours for the presence/absence test), Bluephage allows the direct detection of one plaque-forming unit (PFU) in a 100 mL water sample. The test shows high levels of specificity for somatic coliphages and comparable accuracy with standardized methods.We report on novel, sensitive, selective and low-temperature hydrogen sulfide (H2S) gas sensors based on metal-oxide nanoparticles incorporated within polymeric matrix composites. The Copper-Oxide (CuO) nanoparticles were prepared by a colloid microwave-assisted hydrothermal method that enables precise control of nanoparticle size. The sodium carboxymethyl cellulose (CMC) powder with 5% glycerol ionic liquid (IL) was prepared and mixed with different concentrations of CuO NPs (2.5-7.5 wt.%) to produce flexible and semi-conductive polymeric matrix membranes. Each membrane was then sandwiched between a pair of electrodes to produce an H2S gas sensor. The temperature-dependent gas sensing characteristics of the prepared sensors were investigated over the temperature ranges from 40 °C to 80 °C. The sensors exhibited high sensitivity and reasonably fast responses to H2S gas at low working temperatures and at a low gas concentration of 15 ppm. Moreover, the sensors were highly selective to H2S gas, and they showed low humidity dependence, which indicates reliable functioning in humid atmospheres. This organic-inorganic hybrid-materials gas sensor is flexible, with good sensitivity and low power consumption has the potential to be used in harsh environments.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Based on phylogenetic analyses, strain M2a isolated from honey, an unexpected source of acinetobacters, was classified as Acinetobacter lwoffii. The genome of this strain is strikingly crowded with mobile genetic elements. It harbours more than 250 IS elements of 15 IS-families, several unit and compound transposons and 15 different plasmids. These IS elements, including 30 newly identified ones, could be classified into at least 53 IS species. Regarding the plasmids, 13 of the 15 belong to the Rep-3 superfamily and only one plasmid, belonging to the "Low-GC" family, possesses a seemingly complete conjugative system. The other plasmids, with one exception, have a mobilization region of common pattern, consisting of the divergent mobA/mobL-family and mobS-, mobC- or traD-like genes separated by an oriT-like sequence. Although two plasmids of M2a are almost identical to those of A. lwoffi strains isolated from gold mine or Pleistocene sediments, most of them have no close relatives. The presence of numerous plasmid-borne and chromosomal metal resistance determinants suggests that M2a previously has also evolved in a metal-polluted environment.