The paper deals with the study of antioxidant properties of extracts from vine seeds (Vitis vinifera L.) using spectrometric and chromatographic techniques. Ten vine varieties (Cerason, Laurot, Kofranka, Gewürztraminer, Hibernal, Blaufrankisch, Zweigeltrebe, Erilon, Palava, and Welschriesling) obtained from the years 2015, 2016, and 2017 were selected for the study. The antioxidant activity was determined spectrophotometrically using four fundamentally different methods; the content of total polyphenolic compounds was determined using the Folin-Ciocalteu method. In 2015, the content of 14 antioxidants (gallic acid, caffeic acid, coumaric acid, coutaric acid, ferulic acid, fertaric acid, trans-piceid, trans-piceatannol, rutin, quercetin-3-β-d-glucoside, quercitrin, myricetin, catechin, and epicatechin) were studied. The results of the study show the high content of antioxidant components in grape seeds and the differences in content in individual varieties and in individual years.p-Cymene (p-C) and rosmarinic acid (RA) are secondary metabolites that are present in medicinal herbs and Mediterranean spices that have promising anti-inflammatory properties. This study aimed to evaluate their intestinal anti-inflammatory activity in the trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. p-C and RA (25-200 mg/kg) oral administration reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. Both compounds (200 mg/kg) decreased malondialdehyde (MDA) and myeloperoxidase (MPO), restored glutathione (GSH) levels, and enhanced fluorescence intensity of superoxide dismutase (SOD). They also decreased interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and maintained IL-10 basal levels. Furthermore, they modulated T cell populations (cluster of differentiation (CD)4+, CD8+, or CD3+CD4+CD25+) analyzed from the spleen, mesenteric lymph nodes, and colon samples, and also decreased cyclooxigenase 2 (COX-2), interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), and nuclear transcription factor kappa B subunit p65 (NFκB-p65) mRNA transcription, but only p-C interfered in the suppressor of cytokine signaling 3 (SOCS3) expression in inflamed colons. An increase in gene expression and positive cells immunostained for mucin type 2 (MUC-2) and zonula occludens 1 (ZO-1) was observed. Altogether, these results indicate intestinal anti-inflammatory activity of p-C and RA involving the cytoprotection of the intestinal barrier, maintaining the mucus layer, and preserving communicating junctions, as well as through modulation of the antioxidant and immunomodulatory systems.The gut-liver axis is of upmost importance for the development of infections after surgery. Further bacterial translocation due to surgery-related dysbiosis is associated with limited detoxification function of the liver compromising outcome of surgical therapy. After liver surgery, about 30% of patients develop a bacterial infection, with the risk of bacteremia or even sepsis-associated liver failure and mortality in >40%. The potential benefit of pro-/synbiotics given before surgery is still under debate. Thus, a systematic literature search on trials comparing patients with or without supplementation and outcome after liver resection or transplantation was performed. Our search strategy revealed 12 relevant studies on perioperative administration of pro-/synbiotics in liver surgery. https://www.selleckchem.com/peptide/tirzepatide-ly3298176.html The pro-/synbiotic combinations and concentrations as well as administration timeframes differed between studies. Five studies were performed in liver transplantation and 7 in liver resection. All studies but one reported lower infection rates (pooled RR 0.46, 95% CI 0.31-0.67) with pro-/synbiotics. Liver function was assessed after LT/LR in 3 and 5 studies, respectively. Pro-/synbiotics improved function in 1/3 and 2/5 studies, respectively. Concluding, perioperative pro-/synbiotics clearly reduce infection after liver surgery. However, standard protocols with both well-defined probiotic strain preparations and administration timeframes are pending.Structural changes in the hippocampus and amygdala have been demonstrated in schizophrenia patients. However, whether morphological information from these subcortical regions could be used by machine learning algorithms for schizophrenia classification were unknown. The aim of this study was to use volume of the amygdaloid and hippocampal subregions for schizophrenia classification. The dataset consisted of 57 patients with schizophrenia and 69 healthy controls. The volume of 26 hippocampal and 20 amygdaloid subregions were extracted from T1 structural MRI images. Sequential backward elimination (SBE) algorithm was used for feature selection, and a linear support vector machine (SVM) classifier was configured to explore the feasibility of hippocampal and amygdaloid subregions in the classification of schizophrenia. The proposed SBE-SVM model achieved a classification accuracy of 81.75% on 57 patients and 69 healthy controls, with a sensitivity of 84.21% and a specificity of 81.16%. AUC was 0.8241 (p less then 0.001 tested with 1000-times permutation). The results demonstrated evidence of hippocampal and amygdaloid structural changes in schizophrenia patients, and also suggested that morphological features from the amygdaloid and hippocampal subregions could be used by machine learning algorithms for the classification of schizophrenia.Colon and rectal tumors, often referred to as colorectal cancer, show different gene expression patterns in studies that analyze whole tissue biopsies containing a mix of tumor and non-tumor cells. To better characterize colon and rectal tumors, we investigated the gene expression profile of organoids generated from endoscopic biopsies of rectal tumors and adjacent normal colon and rectum mucosa from therapy-naive rectal cancer patients. We also studied the effect of vitamin D on these organoid types. Gene profiling was performed by RNA-sequencing. Organoids from a normal colon and rectum had a shared gene expression profile that profoundly differed from that of rectal tumor organoids. We identified a group of genes of the biosynthetic machinery as rectal tumor organoid-specific, including those encoding the RNA polymerase II subunits POLR2H and POLR2J. The active vitamin D metabolite 1α,25-dihydroxyvitamin D3/calcitriol upregulated stemness-related genes (LGR5, LRIG1, SMOC2, and MSI1) in normal rectum organoids, while it downregulated differentiation marker genes (TFF2 and MUC2).