Recently, the focus of Alzheimer's disease (AD) research has shifted from the clinical stage to the preclinical stage. We, therefore, aimed to develop a cognitive composite score that can detect the subtle cognitive differences between the amyloid positive (Aβ+) and negative (Aβ-) status in cognitively normal (CN) participants. A total of 423 CN participants with Aβ positron emission tomography images were recruited. The multiple-indicators multiple-causes model found the latent mean difference between the Aβ+ and Aβ- groups in the domains of verbal memory, visual memory, and executive functions. The multivariate analysis of covariance (MANCOVA) showed that the Aβ+ group performed worse in tests related to the verbal and visual delayed recall, semantic verbal fluency, and inhibition of cognitive inference within the three cognitive domains. The Preclinical Amyloid Sensitive Composite (PASC) model we developed using the result of MANCOVA and the MMSE presented a good fit with the data. The accuracy of the PASC score when applied with age, sex, education, and APOE ε4 for distinguishing between Aβ+ and Aβ- was adequate (AUC = 0.764; 95% CI = 0.667-0.860) in the external validation set (N = 179). We conclude that the PASC can eventually contribute to facilitating more prevention trials in preclinical AD.Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo.Droplet-based high throughput single cell sequencing techniques tremendously advanced our insight into cell-to-cell heterogeneity. However, those approaches only allow analysis of one extremity of the transcript after short read sequencing. In consequence, information on splicing and sequence heterogeneity is lost. To overcome this limitation, several approaches that use long-read sequencing were introduced recently. Yet, those techniques are limited by low sequencing depth and/or lacking or inaccurate assignment of unique molecular identifiers (UMIs), which are critical for elimination of PCR bias and artifacts. We introduce ScNaUmi-seq, an approach that combines the high throughput of Oxford Nanopore sequencing with an accurate cell barcode and UMI assignment strategy. UMI guided error correction allows to generate high accuracy full length sequence information with the 10x Genomics single cell isolation system at high sequencing depths. We analyzed transcript isoform diversity in embryonic mouse brain and show that ScNaUmi-seq allows defining splicing and SNVs (RNA editing) at a single cell level.RASopathies are caused by variants in genes encoding components or modulators of the RAS/MAPK signaling pathway. Noonan syndrome is the most common entity among this group of disorders and is characterized by heart defects, short stature, variable developmental delay, and typical facial features. Heterozygous variants in SOS2, encoding a guanine nucleotide exchange factor for RAS, have recently been identified in patients with Noonan syndrome. The number of published cases with SOS2-related Noonan syndrome is still limited and little is known about genotype-phenotype correlations. We collected previously unpublished clinical and genotype data from 17 individuals carrying a disease-causing SOS2 variant. Most individuals had one of the previously reported dominant pathogenic variants; only four had novel changes at the established hotspots for variants that affect protein function. The overall phenotype of the 17 patients fits well into the spectrum of Noonan syndrome and is most similar to the phenotype observed in patients with SOS1-related Noonan syndrome, with ectodermal anomalies as common features and short stature and learning disabilities as relatively infrequent findings compared to the average Noonan syndrome phenotype. The spectrum of heart defects in SOS2-related Noonan syndrome was consistent with the known spectrum of cardiac anomalies in RASopathies, but no specific heart defect was particularly predominating. Notably, lymphatic anomalies were extraordinarily frequent, affecting more than half of the patients. We therefore conclude that SOS2-related Noonan syndrome is associated with a particularly high risk of lymphatic complications that may have a significant impact on morbidity and quality of life.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Hereditary chronic pancreatitis (HCP) is a genetically determined condition characterized by intermittent acute episodes of pancreatitis and long-term impairment of the exocrine and endocrine pancreatic functions. Genetic test results can have substantial psychological and social consequences for the individuals tested and their families. Nevertheless, little is known so far about the subjective experience of individuals genetically tested for HCP. This qualitative study examines the viewpoints of HCP patients and their relatives in order to identify the psychosocial and ethical implications related to genetic testing within families. Semi-structured qualitative individual interviews and a focus group with HCP patients and their family members were conducted. Data were audio-recorded, transcribed verbatim and analysed using qualitative content analysis. https://www.selleckchem.com/products/AP24534.html A total of 28 individuals were enrolled in the study 24 individuals (17 patients, 7 relatives) were interviewed in semi-structured one-on-one interviews and 4 individuals (2 patients, 2 life partners) participated in the focus group.