https://www.selleckchem.com/products/acalabrutinib.html The enhancement in the loading of the adsorbent resulted in a reduction in mercury adsorption directing to the fact that already adsorbed metal ions onto the adsorbent surface lead to hindrance for the adsorption of other ions of heavy metal. These results lead to a significant impact on modern in inventing different adsorbents with promising water treatment efficiency for more industrial applications and the related recovery of mercury.Nanostructured photocatalysts have always offered opportunities to solve issues concerned with the environmental challenges caused by rapid urbanization and industrialization. These materials, due to their tunable physicochemical characteristics, are capable of providing a clean and sustainable ecosystem to humanity. One of the current thriving research focuses of visible-light-driven photocatalysts is on the nanocomposites of titanium dioxide (TiO2) with carbon nanostructures, especially graphene. Coupling TiO2 with graphene has proven more active by photocatalysis than TiO2 alone. It is generally considered that graphene sheets act as an electron acceptor facilitating the transfer and separation of photogenerated electrons during TiO2 excitation, thereby reducing electron-hole recombination. This study briefly reviews the fundamental mechanism and interfacial charge-transfer dynamics in TiO2/graphene nanocomposites. Design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties. Importantly, the enhancing interfacial charge transfer of photogenerated e¯CB through the graphene layers by morphology orientation of TiO2, predominated exposure of their high energy crystal facets, defect engineering, enhancing catalytic sites in graphene, constructing dedicated architectures, tuning the nanomaterial dimensionality at the interface, and employing the synergism adopted through various modification