Here, flowstone speleothem growth is a sensitive indicator of vegetation density at high altitude, but may respond to other factors at lower altitudes.Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. https://www.selleckchem.com/products/rin1.html indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications.Soil erosion due to underground leakage is a major factor causing land degradation in karst regions. Rhizosphere effects (REs) on soil anti-erodibility (SAE) can alleviate this type of soil erosion by improving soil physical processes such as aggregate stability. However, the magnitudes and causes of interspecific variation in REs on SAE remain unclear. We tested the rhizosphere SAE indices of 42 key woody species distributed worldwide. Biologically active matter (BAM) and analogs of antibiotics (AOAs) that affect the SAE in rhizosphere soils were tested by gas chromatography-mass spectrometry (GC-MS). We then used principal component analysis (PCA) and redundancy analysis (RA) to establish a spectrum of interspecific variability in the REs for the first time. The spectrum shows a gradient of change among species. Eleven species exerted negative REs on the SAE, while the remaining species showed positive effects along the spectrum. The species with large positive effects were mostly deciduous, which have high contents of both BAM and total organic matter and low contents of AOAs in their rhizosphere soil; compared with the other species tested, these species also have more leaves and roots and are better adapted to barren soils. The botanical characteristics of species with negative REs on the SAE differed from those with large positive effects. The contents of BAM in the rhizosphere accounted for 16-23% of the total variation in REs on the SAE. This study quantified interspecific variation in REs and identified root exudates with negative REs.Lake Lanier (Georgia, USA) is home to more than 11,000 microbial Operational Taxonomic Units (OTUs), many of which exhibit clear annual abundance patterns. To assess the dynamics of this microbial community, we collected time series data of 16S and 18S rRNA gene sequences, recovered from 29 planktonic shotgun metagenomic datasets. Based on these data, we constructed a dynamic mathematical model of bacterial interactions in the lake and used it to analyze changes in the abundances of OTUs. The model accounts for interactions among 14 sub-communities (SCs), which are composed of OTUs blooming at the same time of the year, and three environmental factors. It captures the seasonal variations in abundances of the SCs quite well. Simulation results suggest that changes in water temperature affect the various SCs differentially and that the timing of perturbations is critical. We compared the model results with published results from Lake Mendota (Wisconsin, USA). These comparative analyses between lakes in two very different geographical locations revealed substantially more cooperation and less competition among species in the warmer Lake Lanier than in Lake Mendota.An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Processing of genital sensations in the central nervous system of humans is still poorly understood. Current knowledge is mainly based on neuroimaging studies using electroencephalography (EEG), magneto-encephalography (MEG), and 1.5- or 3- Tesla (T) functional magnetic resonance imaging (fMRI), all of which suffer from limited spatial resolution and sensitivity, thereby relying on group analyses to reveal significant data. Here, we studied the impact of passive, yet non-arousing, tactile stimulation of the penile shaft using ultra-high field 7T fMRI. With this approach, penile stimulation evoked significant activations in distinct areas of the primary and secondary somatosensory cortices (S1 & S2), premotor cortex, insula, midcingulate gyrus, prefrontal cortex, thalamus and cerebellum, both at single subject and group level. Passive tactile stimulation of the feet, studied for control, also evoked significant activation in S1, S2, insula, thalamus and cerebellum, but predominantly, yet not exclusively, in areas that could be segregated from those associated with penile stimulation. Evaluation of the whole-brain activation patterns and connectivity analyses indicate that genital sensations following passive stimulation are, unlike those following feet stimulation, processed in both sensorimotor and affective regions.The prognosis of advanced stage cervical cancer is poorer due to cancer invasion and metastasis. Exploring new factors and signalling pathways associated with invasiveness and metastasis would help to identify new therapeutic targets for advanced cervical cancer. We searched the cancer microarray database, Oncomine, and found elevated calponin 3 (CNN3) mRNA expression in cervical cancer tissues. QRT-PCR verified the increased CNN3 expression in cervical cancer compared to para-cancer tissues. Proliferation, migration and invasion assays showed that overexpressed CNN3 promoted the viability and motility of cervical cancer cells, the opposite was observed in CNN3-knockdown cells. In addition, xenografted tumours, established from SiHa cells with CNN3 knockdown, displayed decreased growth and metastasis in vivo. Furthermore, RNA-sequencing showed that ribosomal protein lateral stalk subunit P1 (RPLP1) was a potential downstream gene. Gene function experiments revealed that RPLP1 had the same biological effects as CNN3 did.