Besides, the higher NiO content of A100 contributed to improving the photocatalytic effect. Our work demonstrated a promising strategy for efficient water pollution purification caused by pathogenic bacteria.Sulfur vacancy (SV) defects have been engineered in two-dimensional (2D) transition metal dichalcogenides (TMDs) for high performance applications in various fields involving environmental protection. Understanding the influence of SVs on the environmental fate and toxicity of TMDs is critical for evaluating their risk. Our work discovered that SVs (with S/Mo ratios of 1.65 and 1.32) reduced the dispersibility and promoted aggregation of 2H phase molybdenum disulfide (2H-MoS2, a hot TMD) in aqueous solution. The generation capability of •O2- and •OH was increased and the dissolution of 2H-MoS2 was significantly accelerated after SVs formation. Different with pristine form, S-vacant 2H-MoS2 preferentially harvested proteins (i.e., forming protein corona) involved in antioxidation, photosynthetic electron transport, and the cytoskeleton structure of microalgae. These proteins contain a higher relative number of thiol groups, which exhibited stronger affinity to S-vacant than pristine 2H-MoS2, as elucidated by density functional theory calculations. Notably, SVs aggravated algal growth inhibition, oxidative damage, photosynthetic efficiency and cell membrane permeability reduction induced by 2H-MoS2 due to increased free radical yield and the specific binding of functional proteins. https://www.selleckchem.com/products/ipi-145-ink1197.html Our findings provide insights into the roles of SVs on the risk of MoS2 while highlighting the importance of rational design for TMDs application.Antibiotic-resistant bacteria (ARB) and their resistance genes (ARGs) are emerging environmental pollutants that pose great threats to human health. In this study, a novel strategy using plasma was developed to simultaneously remove antibiotic-resistant Escherichia coli (AR bio-56954 E. coli) and its ARGs, aiming to inhibit gene transfer by conjugation. Approximately 6.6 log AR bio-56954 E. coli was inactivated within 10 min plasma treatment, and the antibiotic resistance to tested antibiotics (tetracycline, gentamicin, and amoxicillin) significantly decreased. Reactive oxygen and nitrogen species (RONS) including •OH, 1O2, O2•-, NO2-, and NO3- contributed to ARB and ARGs elimination; their attacks led to destruction of cell membrane, accumulation of excessive intracellular reactive oxygen substances, deterioration of conformational structures of proteins, and destroy of nucleotide bases of DNA. As a result, the ARGs (tet(C), tet(W), blaTEM-1, aac(3)-II), and integron gene intI1), and conjugative transfer frequency of ARGs significantly decreased after plasma treatment. The results demonstrated that plasma has great prospective application in removing ARB and ARGs in water, inhibiting gene transfer by conjugation.The transport behaviors of nanomaterials, in especial multifunctional nanohybrids have not been well disclosed until now. In this study, environmentally relevant conditions, including cation types, ionic strength and pH, were selected to investigate the transport and retention of graphene oxide-hematite (GO-Fe2O3) nanohybrids and a photoaged product in saturated sandy columns. Results show that more hybridization of hematite led to decreased negative surface charge, while increased particle size and hydrophobicity of the nanohybrids, which depressed their transport according to extented Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. However, the inhibitory transport of photoaged nanohybrids was attributed to their distinct surface roughness caused by relatively high hybridization and photoirradiation. Notably the restrained transport was alleviated in the CaCl2 saturated media, since the less surface O-functional groups of the corresponding nanohybrids reduced the cation bridging effect caused by Ca2+. Similarly, increasing pH promoted the transport of the nanohybrids in NaCl saturated media, particularly for the nanohybrids that contained rich O-functional groups, but exerted inconspicuous effect on mobility of the nanohybrids in CaCl2 saturated media. These observations highlight that both XDLVO interactions and surface roughness may work together to impact the transport and fate of the burgeoning, versatile nanohybrids in the environment.Effective extraction of useful resources from high-salinity textile wastewater is a critical pathway for sustainable wastewater management. In this study, an integrated loose nanofiltration-electrodialysis process was explored for simultaneous recovery of dyes, NaCl and pure water from high-salinity textile wastewater, thus closing the material loop and minimizing waste emission. Specifically, a loose nanofiltration membrane (molecular weight cutoff of ~800 Da) was proposed to fractionate the dye and NaCl in the high-salinity textile wastewater. Through a nanofiltration-diafiltration unit, including a pre-concentration stage and a constant-volume diafiltration stage, the dye could be recovered from the high-salinity textile wastewater, being enriched at a factor of ~9.0, i.e., from 2.01 to 17.9 g·L-1 with 98.4% purity. Assisted with the subsequent implementation of electrodialysis, the NaCl concentrate and pure water were effectively reclaimed from the salt-containing permeate coming from the loose nanofiltration-diafiltration. Simultaneously, the produced pure water was further recycled to the nanofiltration-diafiltration unit. This study shows the potential of the integration of loose nanofiltation-diafiltration with electrodialysis for sufficient resource extraction from high-salinity textile wastewater.The biological treatment of textile wastewater discharged from the dye baths and rinsing processes are challenged by both high temperatures of 50-80 °C and sulfate reduction. At present, most studies report azo dyes can be removed under mesophilic conditions, but the sulfate reduction is inevitable, consuming extra electron donors and producing undesirable sulfide. In this work, a Caldanaerobacter (> 97%) dominated extreme-thermophilic consortium (EX-AO7) was enriched using xylose as the substrate. The typical sulfate-reducing enzymes such as sulfite oxidase and sulfite reductase were not identified in enriched EX-AO7 by the metagenomic analysis. Then, the decolorization and sulfate reduction were expectedly decoupled by enriched EX-AO7 in extreme-thermophilic conditions, in which no sulfide was detected during the AO7 decolorization process. AO7 of 100 and 200 mg/L could be totally decolorized by EX-AO7. However, when 400 mg/L AO7 was added, the residual AO7 concentration was 22 ± 19 mg/L after 24 h, which was mainly due to the toxicity of AO7.