If thermoplasmonic applications such as heat-assisted magnetic recording are to be commercially viable, it is necessary to optimize both thermal stability and plasmonic performance of the devices involved. In this work, a variety of different adhesion layers were investigated for their ability to reduce dewetting of sputtered 50 nm Au films on SiO2 substrates. Traditional adhesion layer metals Ti and Cr were compared with alternative materials of Al, Ta, and W. Film dewetting was shown to increase when the adhesion material diffuses through the Au layer. An adhesion layer thickness of 0.5 nm resulted in superior thermomechanical stability for all adhesion metals, with an enhancement factor of up to 200× over 5 nm thick analogues. The metals were ranked by their effectiveness in inhibiting dewetting, starting with the most effective, in the order Ta > Ti > W > Cr > Al. Finally, the Au surface-plasmon polariton response was compared for each adhesion layer, and it was found that 0.5 nm adhesion layers produced the best response, with W being the optimal adhesion layer material for plasmonic performance.The development of highly efficient electrocatalysts for the oxygen evolution reaction (OER) plays a crucial role in many regenerative electrochemical energy-conversion systems. Herein, we report a novel double core-shell-structured CNH@PDA@NiMOF (CNH-D-NiMOF) composite based on the support of carbon nanohorns (CNHs) and the direction of polydopamine (PDA) on the synthesis of metal-organic frameworks (MOFs). It is found that this unique structure improves the electrocatalytic performance and stability of the composites. Furthermore, a controlled partial pyrolysis strategy was proposed to construct the Ni-based nanoparticle-embedded N-doped CNHs. The partial pyrolysis method preserves the framework structure of MOFs for effective substrate diffusion while producing highly active nanoparticles. This leads to the result that the Ni-based nanoparticle-embedded N-doped CNHs possess higher stability and significantly improved electrocatalytic properties. Among these derivatives, the sample prepared at a pyrolysis temperature of 400 °C (named as CNH-D-NiMOF-400) outperforms most of the reported unprecious-metal catalysts. At current densities of 20 and 100 mA·cm-2, the overpotentials of CNH-D-NiMOF-400 are 270 and 340 mV for the OER on a carbon fiber paper (CFP), respectively. The outstanding electrocatalytic properties above suggest that this composite is an excellent candidate for the substitution of noble metal-based catalysts for OER.Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.Herein, we demonstrate a synergistic combination of novel mechanisms in aluminum (Al)-alloyed Yb0.3Co4Sb12-based thermoelectric materials to address both reduction in thermal conductivity and concomitant enhancement in power factor (PF). Upon Al alloying, CoAl nanoprecipitates are embedded in the matrix, leading to (1) significant local strain and thus intensified phonon scattering and (2) carrier injection because of interphase electron transfer. Moreover, by decreasing the Yb filling fraction, not only is the electronic thermal conductivity significantly suppressed but also the carrier concentration is modulated to the optimum range, thus resulting in the dramatically boosted PF, especially below 773 K. As a result, a peak ZT value of 1.36 at 873 K and ZTave of 0.96 from 300 to 873 K were obtained in Yb0.21Co4Sb12/0.32CoAl. Last but not the least, the mechanical properties of the Al-alloyed samples were considerably improved through CoAl precipitate hardening, offering great potential for commercial applications.Despite the excellent electrochemical performance of MnO-based electrodes, a large capacity increase cannot be avoided during long-life cycling, which makes it difficult to seek out appropriate cathode materials to match for commercial applications. In this work, a grape-like MnO-Ni@C framework from interfacial superassembly with remarkable electrochemical properties was fabricated as anode materials for lithium-ion batteries. Electrochemical analysis indicates that the introduction of Ni not only contributes to the excellent rate capability and high specific capacity but also prevents further oxidation of MnO to the higher valence states for ultrastable long-life cycling performance. Furthermore, thermodynamic calculation proves that the ultrastable long cycling life of the Ni-Mn-O system originated from a buffer composition region to stabilize the MnO structure. Because of the unique grape-like structure and performance of the Ni-Mn-O system, the MnO-Ni@C electrode displayed an invertible specific capacity of 706 mA h g-1 after 200 cycles at a current density of 0.1 A g-1 and excellent cycling stability maintained a capacity of 476.8 mA h g-1 after 2100 cycles at 1.0 A g-1 without obvious capacity change. This new nanocomposite material could offer a novel fabrication strategy and insight for MnO-based materials and other metal oxides as anodes for improved electrochemical performance.Carbon nanotubes (CNTs), helically wrapped with single-stranded DNA, have recently emerged as a spin-filtering material. The inversion asymmetric helical potential of DNA creates a spin-filtering effect (commonly known as "chirality-induced spin selectivity" or CISS), which polarizes carrier spins in the nanotube. Thus, tuning of the DNA-CNT interaction is expected to affect carrier spins in nanotubes. The CISS effect induces spin polarization, which is coupled with the carrier's momentum direction, and therefore, in one-dimensional systems, such as nanotubes, momentum flip must be accompanied by a simultaneous spin flip. This spin momentum locking can have a profound impact on charge transport in nanotubes as backscattering due to phonons and disorder will be suppressed as these mechanisms are spin-independent. Here, we report DNA-CNT spin filters in which CNTs have been functionalized with two different classes of sequences, exhibiting different degrees of interaction with the CNT. https://www.selleckchem.com/products/filgotinib.html They induce different degrees of spin polarization in the channel, with significant impact on temperature-dependent charge transport and interference phenomena arising from carrier backscattering.