EOD were significantly impaired in attention/processing speed and global cognitive function at baseline but did not experience more rapid decline as compared to NDC. Those with LOD compared to both NDC and EOD performed worse in all domains at baseline and experienced more rapid decline in verbal skills and delayed memory ability. Our findings suggest that baseline impairment may lower the threshold for those with LLD to develop dementia. EOD and LOD may represent distinct phenotypes of cognitive impairment with differing neural substrates. LOD may represent a distinct phenotype with a more rapid decline in verbal skills and delayed memory.Many genetic diseases are caused by single-nucleotide polymorphisms. Base editors can correct these mutations at single-nucleotide resolution, but until recently, only allowed for transition edits, addressing four out of twelve possible DNA base substitutions. Here, we develop a class of CG to GC Base Editors to create single-base genomic transversions in human cells. Our CG to GC Base Editors consist of a nickase-Cas9 fused to a cytidine deaminase and base excision repair proteins. Characterization of >30 base editor candidates reveal that they predominantly perform CG to GC editing (up to 90% purity), with rAPOBEC-nCas9-rXRCC1 being the most efficient (mean 15.4% and up to 37% without selection). CG to GC Base Editors target cytidine in WCW, ACC or GCT sequence contexts and within a precise three-nucleotide window of the target protospacer. We further target genes linked to dyslipidemia, hypertrophic cardiomyopathy, and deafness, showing the therapeutic potential of these base editors in interrogating and correcting human genetic diseases.Mechanistic understanding of oncogenic variants facilitates the development and optimization of treatment strategies. We recently identified in-frame, tandem duplication of EGFR exons 18 - 25, which causes EGFR Kinase Domain Duplication (EGFR-KDD). Here, we characterize the prevalence of ERBB family KDDs across multiple human cancers and evaluate the functional biochemistry of EGFR-KDD as it relates to pathogenesis and potential therapeutic intervention. We provide computational and experimental evidence that EGFR-KDD functions by forming asymmetric EGF-independent intra-molecular and EGF-dependent inter-molecular dimers. Time-resolved fluorescence microscopy and co-immunoprecipitation reveals EGFR-KDD can form ligand-dependent inter-molecular homo- and hetero-dimers/multimers. https://www.selleckchem.com/products/Nolvadex.html Furthermore, we show that inhibition of EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. Collectively, our findings define a previously unrecognized model of EGFR dimerization, providing important insights for the understanding of EGFR activation mechanisms and informing personalized treatment of patients with tumors harboring EGFR-KDD. Finally, we establish ERBB KDDs as recurrent oncogenic events in multiple cancers.Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)x) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)x). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm-2 and small Tafel slope of 29.2 mV dec-1. Theoretical calculation indicates that compositing of FeCoNi(OH)x with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)x anode for overall water splitting, which generates a current density of 100 mA cm-2 at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis.Many immune responses depend upon activation of NF-κB, an important transcription factor in the elicitation of a cytokine response. Here we show that N4BP1 inhibits TLR-dependent activation of NF-κB by interacting with the NF-κB signaling essential modulator (NEMO, also known as IκB kinase γ) to attenuate NEMO-NEMO dimerization or oligomerization. The UBA-like (ubiquitin associated-like) and CUE-like (ubiquitin conjugation to ER degradation-like) domains in N4BP1 mediate interaction with the NEMO COZI domain. Both in vitro and in mice, N4bp1 deficiency specifically enhances TRIF-independent (TLR2, TLR7, or TLR9-mediated) but not TRIF-dependent (TLR3 or TLR4-mediated) NF-κB activation, leading to increased production of proinflammatory cytokines. In response to TLR4 or TLR3 activation, TRIF causes activation of caspase-8, which cleaves N4BP1 distal to residues D424 and D490 and abolishes its inhibitory effect. N4bp1-/- mice also have diminished numbers of T cells in the peripheral blood. Our work identifies N4BP1 as an inhibitory checkpoint protein that must be overcome to activate NF-κB, and a TRIF-initiated caspase-8-dependent mechanism by which this is accomplished.Behavioural disturbances in attention deficit hyperactivity disorder (ADHD) are thought to be due to dysfunction of spatially distributed, interconnected neural systems. While there is a fast-growing literature on functional dysconnectivity in ADHD, far less is known about the structural architecture underpinning these disturbances and how it may contribute to ADHD symptomology and treatment prognosis. We applied graph theoretical analyses on diffusion MRI tractography data to produce quantitative measures of global network organisation and local efficiency of network nodes. Support vector machines (SVMs) were used for comparison of multivariate graph measures of 37 children and adolescents with ADHD relative to 26 age and gender matched typically developing children (TDC). We also explored associations between graph measures and functionally-relevant outcomes such as symptom severity and prediction of methylphenidate (MPH) treatment response. We found that multivariate patterns of reduced local efficiency, predominantly in subcortical regions (SC), were able to distinguish between ADHD and TDC groups with 76% accuracy.