https://www.selleckchem.com/products/alofanib-rpt835.html Impact of globulin addition on the functional and protein structural properties of dough and cooked noodles were investigated. The underlying mechanism was explored through analyzing the interaction between globulin and gluten by using SDS-PAGE, size exclusion chromatography, free sulfhydryl/disulfide bond analysis, laser scanning confocal microscopy and Fourier transform infrared spectroscopy. Results showed that the stiffness/hardness and maximum resistance of dough and cooked noodles were both increased when globulin addition was 1.5% or higher. Besides, extensibility of cooked noodles was also improved when the addition up to 3.0%. The addition of globulin facilitated weakening the S-S bonds in the gluten network and cross-linked with SDS-soluble gluten mainly through non-covalent interactions, especially hydrophobic interactions. Meanwhile, a more rigid protein network structure was observed. Additionally, following cooking, globulin addition accelerated the aggregation of protein molecules. When the addition reached 3%, the protein conformation was transformed from β-sheets and random coils to β-turns.Thrombin is a key therapeutic target protein of thrombosis. To date, massive studies have focused on the exploration of antithrombotic compounds. Here we capitalize on molecular docking, molecular simulations and spectroscopic experiments for virtually screening natural products that can inhibit thrombin and elucidating their interaction mechanism. Six compounds are screened from a natural product database by a cross-analysis based on two semi-flexible molecular docking methods. We show that four compounds can effectively inhibit thrombin and Calceolarioside B is the most competitive one based on enzyme inhibition experiments. Moreover, the binding free energies of these compounds with thrombin exhibit a consistent rank trend with their enzyme inhibition assay results. In addition, the Van der Waals is the