https://www.selleckchem.com/products/Acadesine.html The impact of dose heterogeneity within the tumor on TCP and NTCP was studied using various radiobiological models. The effect of the degree of heterogeneity index (HI) on TCP was also analyzed. Thirty-seven pre-treated liver SBRT cases were included in this study. Two different kinds of treatment techniques were employed. In both arms, the prescribed dose was received by 95% of the PTV. Initially, the inhomogeneous treatment plans (IHTP) were made in which the spatial change of dose within the PTV was high and the maximum dose within the PTV can go up to 160%. Subsequently, in another arm, homogeneous treatment plans (HTP) were generated in which PTV was covered with the same prescription isodose and the maximum dose can go up to 120%. As per RTOG 1112, all organs at risk (OAR's) were considered while optimization of the treatment plans. TCP was calculated using the Niemierko and Poisson model. NTCP was calculated using the Niemierko and LKB fractionated model. For the IHTP, TCP was decreasing as 'a' vds to an increase in the TCP.The aim of this study was to evaluate the clinical impact of relative biological effectiveness (RBE) variations in proton beam scanning treatment (PBS) for left-sided breast cancer versus the assumption of a fixed RBE of 1.1, particularly in the context of comparisons with photon-based three-dimensional conformal radiotherapy (3DCRT) and volumetric modulated arc therapy (VMAT). Ten patients receiving radiation treatment to the whole breast/chest wall and regional lymph nodes were selected for each modality. For PBS, the dose distributions were re-calculated with both a fixed RBE and a variable RBE using an empirical RBE model. Dosimetric indices based on dose-volume histogram analysis were calculated for the entire heart wall, left anterior descending artery (LAD) and left lung. Furthermore, normal tissue toxicity probabilities for different endpoints were evaluated. The results show that