https://www.selleckchem.com/products/calpeptin.html Cellular senescence is a stress response that imposes a growth arrest on cancer and nonmalignant cells during cancer therapy. By secreting a plethora of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP), therapy-induced senescent cells can promote tumorigenesis. Moreover, the SASP from senescent cells is also able to drive therapy resistance and mediate many adverse effects of cancer therapy. Because senescent cell production often occurs during cancer therapy, it is important to carefully consider these potential detrimental effects. Senotherapy, which refers to selective removal of senescent cells, has been proposed as a promising adjuvant approach to eliminate the adverse effects of senescent cells. Thus, in this review we summarize in detail the mechanisms by which senescent cells contribute to tumorigenesis and therapeutic resistance. Also, we thoroughly discuss the potential strategies regarding how to effectively circumvent the undesirable effects of therapy-induced senescent cells.In the last decade, additive manufacturing (AM) technologies have revolutionized how healthcare provision is envisioned. The rapid evolution of these technologies has already created a momentum in the effort to address unmet personalized needs in large patient groups, especially those belonging to sensitive subgroup populations (e.g., paediatric, geriatric, visually impaired). At the same time, AM technologies have become a salient ally to overcome defined health challenges in drug formulation development by addressing not only the requirement of personalized therapy, but also problems related to lowering non-specific drug distribution and the risk of adverse reactions, enhancing drug absorption and bioavailability, as well as ease of administration and patient compliance. To this end, mucoadhesive drug delivery systems fabricated with the support of AM technologies provide competitiv