The abilities to modulate linear and nonlinear optical response of materials in the nanoscale are of central importance in the design and fabrication of photonic devices for applications like optical modulators. Here, based on a simple transition metal oxide/nitride (TiO2/TiN) system, we show that it is possible to tune the optical properties by controlling the nanoscale architecture. Through controlled oxidation of the plasmonic TiN nanoparticle surfaces, we observe a continuous change of linear and nonlinear optical (NLO) properties with the increase of the thickness of the oxide layer in the TiN/TiO2 heterogeneous architecture. https://www.selleckchem.com/products/indisulam.html The NLO response is manifested by the strong saturable absorption with a structurally tunable negative NLO absorption coefficient. The variation in the NLO absorption coefficient by up to 7-fold can be connected to the relative change in the volume fraction of the metallic core and the dielectric shell. We demonstrate further that the optimized TiN-TiO2 heterostructures can be used to drive an optical switch for pulse laser generation in the 1.5 μm wavelength region. Our results delineate a topochemical process for optimization of the NLO properties of common plasmonic materials for photonic applications based on simple materials chemistry.The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm2) were constructed. The thickness and permeability of the film systems can be fine-tuned by varying the precursor concentration or by changing another building block. A typical nanofilm (C[4]P-TFB, ∼67 nm) depicted high water flux (39.9 L m-2 h-1 under 1 M Na2SO4), narrow molecular weight cut-off value (∼200 Da), and promising antifouling properties in the forward osmosis (FO) process. In addition, the nanofilms are stable over a wide pH range and tolerable to different organic solvents. Interestingly, the introduction of C[4]P endowed the nanofilms with both outstanding mechanical properties and unique group-selective separation capability, laying the foundation for wastewater treatment and pharmaceutical concentration.While bulk gold is generally considered to be a catalytically inactive material, nanostructured forms of gold can in fact be highly catalytically active. However, few methods exist for preparing high-purity macroscopic forms of catalytically active gold. In this work, we describe the synthesis of catalytically active macroscopic nanoporous gold foams via combustion synthesis of gold bis(tetrazolato)amine complexes. The resulting metallically pure porous gold nanoarchitectures exhibit bulk densities of less then 0.1 g/cm3 and Brunauer-Emmett-Teller (BET) surface areas as high as 10.9 m2/g, making them among the lowest-density and highest-surface-area monolithic forms of gold produced to date. Thanks to the presence of a highly nanostructured gold surface, such gold nanofoams have also been found to be highly catalytically active toward thermal chemical vapor deposition (CVD) growth of carbon nanotubes, providing a novel method for direct synthesis of carbon nanostructures on macroscopic gold substrates. In contrast, analogous copper nanofoams were found to be catalytically inactive toward the growth of graphitic nanostructures under the same synthesis conditions, highlighting the unusually high catalytic propensity of this form factor of gold. The combustion synthesis process described herein represents a never-wet approach for directly synthesizing macroscopic catalytically active gold. Unlike sol-gel and dealloying approaches, combustion synthesis eliminates the time-consuming diffusion-mediated steps associated with previous methods and offers multiple degrees of freedom for tuning morphology, electrical conductivity, and mechanical properties.Transparent conductive films (TCFs) based on silver nanowires (AgNWs) are becoming one of the best candidates in realizing flexible optoelectronic devices. The AgNW-based TCF is usually prepared by coating AgNWs on a transparent polymer film; however, the coated AgNWs easily detach from the polymer underneath because of the weak adhesion between them. Herein, a network of AgNWs is embedded in the transparent hydroxypropyl methyl cellulose film, which has a strong adhesion with the AgNWs. The obtained TCF shows high optical transmittance (>85%), low roughness (rms = 4.8 ± 0.5 nm), and low haze ( less then 0.2%). More importantly, owing to the embedding structure and strong adhesion, this TCF also shows excellent electromechanical stability, which is superior to the reported ones. Employing this TCF in a flexible electrochromic device, the obtained device exhibits excellent cyclic electromechanical stability and high coloring efficiency. Our work demonstrates a promising TCF with superior electromechanical stability for future applications in flexible optoelectronics.Inversion of the uterus is defined as the turning inside out of the fundus into the uterine cavity. According to the literature, uterine inversion occurs in 1/20,000 or even 1/1,584 deliveries. Mortality rates following acute uterine inversion were reported by some authors to have been as high as 80%. Therefore, it is very important to make an early diagnosis. The shorter the time between the moment of uterine inversion and its repositioning, the better the results of conservative treatment, and bigger chance of avoiding surgical management. The article presents two cases of patients hospitalised in 2010 - 2011 in the Gynaecologic and Obstetrics Department of the Regional Polyclinic Hospital in Kalisz, Central Poland, diagnosed with acute uterine inversion in accordance with the applicable classification. Surgical management was applied in one of the patients. The other patient was managed in a conservative manner. Both women were discharged from the hospital in a good general condition.