https://www.selleckchem.com/products/Sunitinib-Malate-(Sutent).html Bacterial plasmids play a large role in allowing bacteria to adapt to changing environments and can pose a significant risk to human health if they confer virulence and antimicrobial resistance (AMR). Plasmids differ significantly in the taxonomic breadth of host bacteria in which they can successfully replicate, this is commonly referred to as 'host range' and is usually described in qualitative terms of 'narrow' or 'broad'. Understanding the host range potential of plasmids is of great interest due to their ability to disseminate traits such as AMR through bacterial populations and into human pathogens. We developed the MOB-suite to facilitate characterization of plasmids and introduced a whole-sequence-based classification system based on clustering complete plasmid sequences using Mash distances (https//github.com/phac-nml/mob-suite). We updated the MOB-suite database from 12 091 to 23 671 complete sequences, representing 17 779 unique plasmids. With advances in new algorithms for rapidly calculating averest taxonomic rank that covers all of the plasmids which share replicon or relaxase biomarkers or belong to the same MOB-suite cluster code. Reporting host range based on these criteria allows for comparisons of host range between studies and provides information for plasmid surveillance.The taxonomic position of a novel aerobic, Gram-positive actinobacteria, designated strain RB5T, was determined using a polyphasic approach. The strain, isolated from the gut of the fungus-farming termite Macrotermes natalensis, showed morphological, physiological and chemotaxonomic properties typical of the genus Streptomyces. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbour of RB5T was Streptomyces polyrhachis DSM 42102T (98.87 %). DNA-DNA hybridization experiments between strain RB5T and S. polyrhachis DSM 42102T resulted in a value of 27.4 % (26.8 %). The cell wall of strain RB5T