https://www.selleckchem.com/products/gsk2606414.html 00. © Association of Food Scientists & Technologists (India) 2019.In recent years, the consumption rate of herbal teas has increased rapidly. In this study, 28 different plants (fennel, linden, roots, chamomile, green tea, thyme, sage, rosemary, rosehip, ginger, balm, echinacea, blue tea etc.) used as herbal tea bags and leaves/flowers. Different types of herbal tea were prepared keeping boiling water in contact for ten min with herbal teas and were digested with HNO3 and H2O2 in a microwave oven. In these samples, trace element concentrations (As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, V, Zn) were determined by Inductively Coupled Plasma Mass Spectrometry. The analytical performances were assessed as linearity, the limit of detection, limit of quantification, specificity/selectivity and recovery (%). The recovery values changed between 88 and 112%. © Association of Food Scientists & Technologists (India) 2019.D-lactic acid (DLA) serves as a key monomer enhancing both the mechanical and thermal properties of Poly(lactic) acid films and coatings, extensively used in the food packaging industry. Economically viable production of optically pure DLA by Lactobacillus delbrueckii NBRC3202 was achieved using a low-cost carbon source, Kodo millet bran residue hydrolysate (KMBRH) and nitrogen source (casein enzyme hydrolysate (CEH) resulting in a high DLA yield of 0.99 g g-1 and KMBRH conversion to final product (95.3%). The optimum values for kinetic parameters viz., specific growth rate (0.11 h-1), yield coefficient of biomass on KMBRH (0.10 g g-1) and DLA productivity (0.45 g L-1 h-1) were achieved at 5 g L-1 of CEH dosage under controlled pH environment. A comparative study and kinetic analysis of different neutralizing agents (NaOH, NH3, CaCO3 and NaHCO3) under pH controlled environment for KMBRH based DLA production was addressed effectively through bioreactor scale experiments. Maximum cell concentration (1.29 g L-1) and D