https://www.selleckchem.com/products/abt-199.html Analyzing costs and greenhouse gas (GHG) emissions could be of great importance for the water utilities to supply water services in a healthy and sustainable manner. In this study, we measured the eco-efficiency of several water utilities in England and Wales by incorporating GHG as an undesirable output. For the first time, we evaluated the eco-efficiency of the water production process using robust cross-efficiency data envelopment analysis (DEA) techniques. The further use of clustering and regression techniques allowed us to better understand the drivers of eco-efficiency. The results showed that the mean eco-efficiency of the water sector was 0.748, which indicates that costs and GHG emissions could be reduced by 25.2% to generate the same level of output. Large water companies with high energy costs and levels of GHG emissions belonged to the less eco-efficient group. Environmental factors related to density, topography, and treatment complexity further impacted eco-efficiency. Finally, we linked our results to the regulatory cycle and discuss some policy implications.Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin found in several food commodities worldwide. ZEA causes reproductive disorders, genotoxicity, and testicular toxicity in animals. However, little is known about the functions of apoptosis and autophagy after exposure to ZEA in granulosa cells. This study investigated the effects of ZEA on chicken granulosa cells. The results show that ZEA at different doses significantly inhibited the growth of chicken granulosa cells by inducing apoptosis. ZEA treatment up-regulated Bax and downregulated Bcl-2 expression, promoted cytochrome c release into the cytosol, and triggered mitochondria-mediated apoptosis. Consequently, caspase-9 and downstream effector caspase-3 were activated, resulting in chicken granulosa cells apoptosis. ZEA treatment also upregulated LC3-II and Beclin-1 expression, suggesting