https://www.selleckchem.com/products/xst-14.html Competition for light between neighboring plants has important consequences for plant fitness and crop productivity. Studies on the molecular mechanisms of plant responses to neighbor proximity have been largely based on the model species Arabidopsis thaliana grown under controlled light environments. These controlled conditions commonly use fluorescent tubes for the main light source for photosynthesis and filtered light form incandescent bulbs to adjust the ratio of red (R) to far-red (FR) radiation. However, both of these types of bulbs are being discontinued and replaced by more efficient sources based on light emitting diodes (LEDs). For that reason, there is a need to evaluate alternative light sources, which can phenocopy the physiological and molecular results obtained with traditional lighting systems. Here we evaluate a custom-made LED culture module that can be used to effectively evaluate shade-avoidance responses, yielding results that, in Arabidopsis, are comparable to those obtained using traditional lighting systems. Nonalcoholic fatty liver disease (NAFLD) is an obesity-related comorbidity, and it is characterized as a spectrum of liver abnormalities, including inflammation, steatosis, and fibrosis. The gut-liver axis is implicated in the pathogenesis and development of NAFLD. A promising drug agent targeting the gut-liver axis is expected to reverse NAFLD. We utilized high-fat diet (HFD)-induced obese mice and obesity-prone Lep mice to examine the gut-liver regulation of the natural medicine Panax Notoginseng Saponins (PNS) on NAFLD. PNS exhibited potent anti-lipogenesis and anti-fibrotic effects in NAFLD mice, that was associated with the TLR4-induced inflammatory signalling pathway in liver. More strikingly, PNS treatment caused a deceleration of gut-to-liver translocation of microbiota-derived short chain fatty acids (SCFAs) products. PNS-induced TLR4 inhibition and restoration of Claudin-1 and ZO