https://www.selleckchem.com/products/gsk467.html With the development of industrial and agricultural production, the cadmium (Cd) pollution in farmland soil is increasing which threatens the quality and safety of agricultural products in China. The purpose of this research is to explore the potential of chelated iron amendments for reducing the bioavailability of Cd to maize plants. The experiment of maize cultivation was carried out in pots. Maize was cultivated in brown soil collected from a northeast region in China and then artificially contaminated with Cd with an average concentration of 10 mg/kg. The potential of ethylenediamine tetra acetic acid ferric-sodium (EDTANa2Fe) and ethylenediamine-N, N'-bis(2-hydroxyphenylacetic acid) ferric-sodium (EDDHAFe) as amendments for Cd immobilization in soils were tested. Effects of different concentrations (0.013, 0.026, 0.053, and 0.08 g/kg) of EDTANa2Fe and EDDHAFe (calculated by iron) on the growth of maize and the Cd and Fe uptake in maize were evaluated. Principle component analysis (PCA) was performed to fon in maize and improve Fe uptake in grains.The science of toxicology dates back almost to the beginning of human history. Toxic chemicals, which are encountered in different forms, are always among the chemicals that should be investigated in criminal field, environmental application, pharmaceutic, and even industry, where many researches have been carried out studies for years. Almost all of not only drugs but also industrial dyes have toxic side and direct effects. Environmental micropollutants accumulate in the tissues of all living things, especially plants, and show short- or long-term toxic symptoms. Chemicals in forensic science can be known by detecting the effect they cause to the body with the similar mechanism. It is clear that the best tracking tool among analysis methods is molecularly printed polymer-based analytical setups. Different polymeric combinations of molecularly imprinted polymers allow fu