Moreover, the ΔC-Wnt5a secretion was not suppressed by IWP-2, indicating that this mutant Wnt5a is secreted via a different pathway from the WT-Wnt5a. Taken together, synergistic overexpression of the ΔC-Wnt5a by c-Myb and FoxM1 may be responsible for the malignant phenotype of acute-type ATL cells.A major proportion of allergic reactions to hazelnuts (Corylus avellana) are caused by immunologic cross-reactivity of IgE antibodies to pathogenesis-related class 10 (PR-10) proteins. Intriguingly, the four known isoforms of the hazelnut PR-10 allergen Cor a 1, denoted as Cor a 1.0401-Cor a 1.0404, share sequence identities exceeding 97% but possess different immunologic properties. In this work we describe the NMR solution structures of these proteins and provide an in-depth study of their biophysical properties. Despite sharing highly similar three-dimensional structures, the four isoforms exhibit remarkable differences regarding structural flexibility, hydrogen bonding and thermal stability. Our experimental data reveal an inverse relation between structural flexibility and IgE-binding in ELISA experiments, with the most flexible isoform having the lowest IgE-binding potential, while the isoform with the most rigid backbone scaffold displays the highest immunologic reactivity. These results point towards a significant entropic contribution to the process of antibody binding.The "Dolomite Problem" has been a controversy for over a century, owing to massive assemblages of low-temperature dolomite in ancient rocks with little dolomite forming today despite favorable geochemical conditions. Experiments show that microbes and their exopolymeric substances (EPS) nucleate dolomite. However, factors controlling ancient abundances of dolomite can still not be explained. To decode the enigma of ancient dolomite, we examined a modern dolomite forming environment, and found that a cyclic shift in microbial community between cyanobacteria and anoxygenic phototrophs creates EPS suited to dolomite precipitation. Specifically, EPS show an increased concentration of carboxylic functional groups as microbial composition cycles from cyanobacterial to anoxygenic phototroph driven communities at low-and high- salinity, respectively. Comparing these results to other low-T forming environments suggests that large turnover of organic material under anoxic conditions is an important driver of the process. Consequently, the shift in atmospheric oxygen throughout Earth's history may explain important aspects of "The Dolomite Problem". Our results provide new context for the interpretation of dolomite throughout Earth's history.Rab46 is a novel Ca2+-sensing Rab GTPase shown to have important functions in endothelial and immune cells. The presence of functional Ca2+-binding, coiled-coil and Rab domains suggest that Rab46 will be important for coupling rapid responses to signalling in many cell types. The molecular mechanisms underlying Rab46 function are currently unknown. Here we provide the first resource for studying Rab46 interacting proteins. Using liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify affinity purified proteins that bind to constitutively active GFP-Rab46 or inactive GFP-Rab46 expressed in endothelial cells, we have revealed 922 peptides that interact with either the GTP-bound Rab46 or GDP-bound Rab46. To identify proteins that could be potential Rab46 effectors we performed further comparative analyses between nucleotide-locked Rab46 proteins and identified 29 candidate effector proteins. Importantly, through biochemical and imaging approaches we have validated two potential effector proteins; dynein and the Na2+/ K+ ATPase subunit alpha 1 (ATP1α1). Hence, our use of affinity purification and LC-MS/MS to identify Rab46 neighbouring proteins provides a valuable resource for detecting Rab46 effector proteins and analysing Rab46 functions.Burkholderia glumae is a causal agent of bacterial grain and seedling rot in rice, and is a threat to stable global food supply. The virulence of B. glumae was suppressed when it was inoculated on budding seed rather than on non-budding seed. To clarify the phenomena, pathogen titer inside the rice plant was measured by serial dilution plating of lysates from budding rice seedlings. Surprisingly, morphologically different types of colonies were observed on the plates. These 'contaminated' rice seed-born bacteria (RSB) were identified by sequencing 16S rRNA genes as three strains of Pseudomonas putida (RSB1, RSB10, RSB15) and Stenotrophomonas maltophilia (RSB2). All bacteria and B. glumae were simultaneously inoculated onto rice seeds, and all three P. putida RSBs suppressed the growth disruption caused by B. glumae, whereas RSB2 had no effect. Thus, the virulence was synergistically suppressed when co-treated with RSBs. The effect could be dependent on the high biofilm formation ability of RSB2. By comprehensive microbiota analysis, endogenous rice flora were changed by RSBs treatment. These results suggest the possibility of novel pathogen control through pre-treatment with endogenous beneficial microorganisms. The method would contribute substantially to the implementation of sustainable agriculture stated in Sustainable Development Goals of United Nations.To determine the use of differential pressure difference (DPD), in air-puff differential tonometry, as a potential biomechanical measure of the cornea and elucidate its relationship with the intraocular pressure (IOP), central corneal thickness, corneal curvature, and age. This study comprised 396 eyes from 198 patients and was conducted at Acibadem University, School of Medicine, Department of Ophthalmology, Istanbul, Turkey. The central corneal curvature and refraction of the eyes were measured using an Auto Kerato-Refractometer (KR-1; Topcon Corporation, Tokyo, Japan). IOP and central corneal thickness were measured using a tono-pachymeter (CT-1P; Topcon Corporation, Tokyo, Japan), wherein two separate readings of IOP were obtained using two different modes 1-30 and 1-60. The difference between these two readings was recorded as the DPD. The factors affecting the DPD were determined by stepwise multiple linear regression analysis. https://www.selleckchem.com/products/dj4.html DPD varied over a dynamic range of - 3.0 to + 5.0 mmHg and was weakly correlated with the central corneal thickness (r = 0.