The novel coronavirus disease-19 (COVID-19) infection has altered the society, economy, and entire healthcare system. Whilst this pandemic has presented the healthcare system with unprecedented challenges, it has rapidly promoted the adoption of telemedicine to deliver healthcare at a distance. Telemedicine is the use of Information and Communication Technology (ICT) for collecting, organizing, storing, retrieving, and exchanging medical information. But it is faced with the limitations of conventional IP-based protocols which makes it challenging to provide Quality of Service (QoS) for telemedicine due to issues arising from network congestion. Likewise, medical professionals adopting telemedicine are affected with low QoS during health consultations with outpatients due to increased internet usage. Therefore, this study proposes a Software-Defined Networking (SDN) based telemedicine architecture to provide QoS during telemedicine health consultations. This study utilizes secondary data from existing research works in the literature to provide a roadmap for the application of SDN to improve QoS in telemedicine during and after the COVID-19 pandemic. Findings from this study present a practical approach for applying SDN in telemedicine to provide appropriate bandwidth and facilitate real time transmission of medical data.Potato dry rot disease caused by Fusarium species is a major threat to global potato production. The soil and seed-borne diseases influence the crop stand by inhibiting the development of potato sprouts and cause severe rots in seed tubers, table and processing purpose potatoes in cold stores. The symptoms of the dry rot include sunken and wrinkled brown to black tissue patches on tubers having less dry matter and shriveled flesh. Fungal infection accompanied by toxin development in the rotten tubers raises more concern for consumer health. The widespread dry rot causing fungal species (Fusarium graminearum) is reported to have a hemibiotrophic lifestyle. A cascade of enzymes, toxins and small secreted proteins are involved in the pathogenesis of these hemibiotrophs. With the availability of the genome sequence of the most devastating species Fusarium sambucinum, it is important to identify the potential pathogenicity factors and small secreted proteins that will help in designing management strategies. Limited resistant cultivars and the emergence of fungicide-resistant strains have made it more threatening for potato cultivation and trade. Several novel fungicide molecules (Azoxystrobin, chlorothalonil and fludioxonil), are found very effective as tuber treatment chemicals. Besides, many beneficial bioagents and safer chemicals have shown antibiosis and mycoparasitism against this pathogen. Germplasm screening for dry rot resistance is important to assist the resistance breeding program for the development of resistant cultivars. This review aims to draw attention to the symptomatology, infection process, pathogenomics, the role of toxins and management approaches for potato dry rot disease, which is very much critical in designing better management strategies.The purpose of this experiment was to analyze the microbial community diversity in three Daqu samples displaying different characteristics in the same Daqu fermentation chamber. A high throughput sequencing technique was used to detect the microbial abundance and diversity in these Daqu samples. Of the three samples, the microbial diversity in the Black sample (sample B) was significantly higher than in the other two. At the genus level, Saccharopolyspora, Bacillus, Lentibacillus, Staphylococcus, Kroppenstedtia, and Thermoactinomyces were the primary bacterial groups in the sesame-flavored liquor, while Thermomyces, Thermoascus, and Aspergillus represented the main fungal groups. In sample B, the dominant bacteria were Thermoactinomyces, Saccharopolyspora, and Pseudomonas. In the White sample (sample W), Thermoactinomyces was the most abundant, followed by Saccharopolyspora and Lentibacillus. Staphylococcus dominated in the Yellow sample (sample Y), followed by Bacillus and Kroppenstedtia. Regarding the fungi in the three samples, Thermomyces accounted for 93.70% in sample B, and Aspergillus dominated in sample W, while the Thermoascus and Aspergillus content were similar in the sample Y. This study examined the microbial diversity in liquor Daqu with different sesame flavors, providing a foundation for microbial regulation, while investigating the relationship between flavored liquor compounds and microorganisms.The Trichoderma harzianum l-methioninase was purified 7.15-fold with a recovery of 47.9% and the specific activity of 74.4 U/mg of protein. The purified enzyme has an apparent molecular mass of 48 kDa on SDS-PAGE and exhibited maximum activity at pH 8 and 35 °C. The enzyme was catalytically stable below 50 °C and at a pH range of 6.0-8.5. The thermal inactivation of l-methioninase exhibited first-order kinetics with the k value between 5.71 × 10-4 min-1 and 1.83 × 10-2 min-1. The studies on thermodynamic parameters of l-methioninase indicated the compaction and aggregation of the enzyme molecule during denaturation. This is the first report of thermodynamic analysis of thermal inactivation in l-methioninase. The enzyme activity was enhanced by Li+ and inhibited by Cu2+, Co2+, Fe2+, Hydroxylamine and PMSF. https://www.selleckchem.com/products/kpt-330.html The purified enzyme showed K m , Vmax and kcat value of 1.19 mM, 21.27 U/mg/min and 16.11 s-1, respectively. The l-methioninase inhibited the growth of human cell lines hepatocellular carcinoma (Hep-G2) and breast carcinoma (MCF-7) with IC50 values of 14.12 μg/ml and 20.07 μg/ml, respectively. The in vivo antitumor activity of l-methioninase was evaluated against DAL cell lines bearing in Swiss albino mice. The enzyme effectively reduced tumor volume, packed cell volume, viable cell count and restored hematological parameters, serum enzyme and lipid profile to normal levels compared to DAL control mice. The present study has demonstrated the high efficacy of Trichoderma harzianum l-methioninase against cancer cell lines in vitro and in vivo conditions. The purified l-methioninase has significant thermal stability and better catalytic properties than the enzyme purified from other sources.