https://www.selleckchem.com/products/ik-930.html 7 MHz, 45.4% fractional bandwidth, and 31 dB SNR. In imaging 20 μm wire targets at a depth of 6 mm, the lateral -6 dB target width was 0.25 ± 0.03 mm. The 3D artery reconstruction allowed visualization of vessel wall structure and lumen. Initial proof-of-concept for an ultrasound transducer-tipped steerable guidewire including 3D image formation without an additional sensor to determine guidewire position was demonstrated for a sub-mm system with an integrated ultrasound transducer and a robotically-steered guidewire. The developed forward-viewing, robotically-steered guidewire may enable navigation through occluded vascular regions that cannot be crossed with current methods. The developed forward-viewing, robotically-steered guidewire may enable navigation through occluded vascular regions that cannot be crossed with current methods.The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune re