https://www.selleckchem.com/products/uk5099.html Technological advances have allowed dried blood spots (DBS) to be utilized for various measurements, helpful in population-based studies. The following is a review of the literature highlighting the advantages and disadvantages of DBS and describing their use in multiple areas of research. DBS can track pollutant exposure to understand their impact on health. DBS can also be used for (epi-)genetic studies, to measure clinical biomarkers, and to monitor drug adherence. Advantages of DBS include being minimally invasive, requiring low blood volume, and being cost-effective to collect, transport, and store. Disadvantages of DBS include the hematocrit effect, which is related to the viscosity of the blood affecting its spread on to the filter paper, causing a major source of error when assessing concentrations, and the possibility of low DNA volume. Numerous uses for DBS make them an important source of biomaterial but they require additional validation for accuracy and reproducibility. DBS can track pollutant exposure to understand their impact on health. DBS can also be used for (epi-)genetic studies, to measure clinical biomarkers, and to monitor drug adherence. Advantages of DBS include being minimally invasive, requiring low blood volume, and being cost-effective to collect, transport, and store. Disadvantages of DBS include the hematocrit effect, which is related to the viscosity of the blood affecting its spread on to the filter paper, causing a major source of error when assessing concentrations, and the possibility of low DNA volume. Numerous uses for DBS make them an important source of biomaterial but they require additional validation for accuracy and reproducibility. The skull base inventory (SBI) was developed to better assess health-related quality of life (HR-QOL) in patients with anterior and central skull base neoplasms treated by endoscopic and open approaches. The primary objective of this study was to