https://www.selleckchem.com/products/jh-re-06.html We demonstrate curved modifications with lengths of up to 2 mm within borosilicate glass produced by single 1030 nm picosecond laser shots with an Airy beam profile. Plasma ignition in the sidelobes of the beam as well as surface damage prove to be the crucial limitations for confined bulk energy deposition on a curved trajectory. A combined experimental and numerical analysis reveals optimum laser parameters for confined bulk energy deposition. This way, we achieved single pass perforation of a 525 µm thick glass sheet and separation by a subsequent etching step, resulting in a well-defined convex edge down to a radius of curvature of 774 µm.Metasurfaces with tunable/switchable circular dichroism (CD) response have great potential to serve as important elements for plenty of advanced applications. In this work, we proposed a novel metasurface absorber integrated with periodic $\rm Ge_2\rm Sb_2\rm Te_5$ (GST) resonators and numerically demonstrated its capability in reconfiguration of the CD effect. Due to the strong chiral plasmonic resonance, a strong CD of about 0.75 can be achieved in a prescribed spectrum. Additionally, the phase transition of GST resonators enables the quasi-linearly modification of CD strength in a broad range (from 0.03 to 0.75). Furthermore, reversible chirality of the metasurface absorber can be realized by controlling the states of the left- and right-hand GST resonators separately, enabling the CD signal to be readily switched between on-, off-, and reverse-state.Nonlinear generation of the quasi-cylindrical and surface waves in terahertz frequency domain under exposure of a femtosecond laser pulse focused into a strip on a metal was studied. Competition between generated waves is determined by the value of the product of electron collision frequency and laser pulse duration. Comparison of magnetic field pulses of the quasi-cylindrical and surface waves generated on the surface is given