Copper (Cu) is a promising antimicrobial for premise plumbing, where ions can be dosed directly via copper silver ionization or released naturally via corrosion of Cu pipes, but Cu sometimes inhibits and other times stimulates Legionella growth. Our overarching hypothesis was that water chemistry and growth phase control the net effect of Cu on Legionella. The combined effects of pH, phosphate concentration, and natural organic matter (NOM) were comprehensively examined over a range of conditions relevant to drinking water in bench-scale pure culture experiments, illuminating the effects of Cu speciation and precipitation. It was found that cupric ions (Cu2+) were drastically reduced at pH > 7.0 or in the presence of ligand-forming phosphates or NOM. Further, exponential phase L. pneumophila were 2.5× more susceptible to Cu toxicity relative to early stationary phase cultures. While Cu2+ ion was the most effective biocidal form of Cu, other inorganic ligands also had some biocidal impacts. A comparison of 33 large drinking water utilities' field-data from 1990 and 2018 showed that Cu2+ levels likely decreased more dramatically (>10×) than did the total or soluble Cu (2×) over recent decades. The overall findings aid in improving the efficacy of Cu as an actively dosed or passively released antimicrobial against L. pneumophila.We have examined the reaction of Salmonella enterica serovar typhimurium tryptophan (Trp) synthase α2β2 complex with l-Trp, d-Trp, oxindolyl-l-alanine (OIA), and dioxindolyl-l-alanine (DOA) in the presence of disodium (dl)-α-glycerol phosphate (GP), using stopped-flow spectrophotometry and X-ray crystallography. All structures contained the d-isomer of GP bound at the α-active site. (3S)-OIA reacts with the pyridoxal-5'-phosphate (PLP) of Trp synthase to form a mixture of external aldimine and quinonoid complexes. The α-carboxylate of OIA rotates about 90° to become planar with the PLP when the quinonoid complex is formed, resulting in a conformational change in the loop of residues 110-115. The COMM domain of the Trp synthase-OIA complex is found as a mixture of two conformations. The (3R)-diastereomer of DOA binds about 5-fold more tightly than (3S)-OIA and also forms a mixture of aldimine and quinonoid complexes. DOA forms an additional H-bond between the 3-OH of DOA and βLys-87. l-Trp does not form a covalent complex with the PLP of Trp synthase. However, d-Trp forms a mixture of two external aldimine complexes which differ in the orientation of the α-carboxylate. In one conformation, the α-carboxylate is in the plane of the PLP, while in the other conformation, the α-carboxylate is perpendicular to the PLP plane. These results confirm that the stereochemistry of the transient indolenine quinonoid intermediate in the mechanism of Trp synthase is (3S) and demonstrate the linkage between aldimine and quinonoid reaction intermediates in the β-active site and allosteric communications with the α-active site.The fate of strontium-90 (90Sr) from water to aquatic biota is of concern since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident because of continuous small 90Sr releases to the seawater from the FDNPP site. The Japanese diet includes many edible marine and freshwater species, and the environmental parameter, that is, the concentration ratio (CR) from water to biota, is useful to estimate the potential 90Sr intake, especially from frequently consumed seafoods. However, widely used CR data for radiation dose assessment only have provided values for biota types such as fish, crustaceans, macroalgae, and so forth, and thus, it is difficult to identify specific data for each species. In this study, therefore, we collated CR data of Sr for aquatic biota by surveying available open data sources from the 1950s to 2019, not only for edible parts but also for whole and inedible parts. In total, we obtained 3800 CR data 3013 data for marine biota, 28 data for brackish water biota, and 759 data for freshwater biota. The results showed that species-specific CRs may decrease the uncertainties compared to those published in IAEA documents; however, different diets and living areas by species may lead to different uncertainties for different species.Responsive cooling materials that mimic sweat glands have gained popularity because they are efficient and do not require artificial energy sources. Temperature-responsive hydrogels sweat above their volume transition temperature through the release of water and exhibit excellent cooling ability. However, thus far, practical applications have not been possible because the water in these materials cannot be preserved in cool environments. To address this issue, this paper presents a simple composite of poly(N-isopropylacrylamide) and polydimethylsiloxane that offers excellent on-off control over water evaporation and can be used repeatedly; the proposed composite features an evaporation rate of 2.97 g/h above the lower critical solution temperature (LCST) and 0.08 g/h below the LCST. This 35.7-fold change in the water evaporation rate is comparable to that in mammalian sweat glands. The responsive on-off control relies on the structures of the composite and the dry layers formed on the surface of the composite in cool environments. The proposed material effectively regulates water evaporation and offers a novel, low-cost cooling strategy suitable for numerous applications.In different mechanical conditions, repetitive friction in combination with pressure, shear, temperature, and moisture leads to skin discomfort and imposes the risks of developing skin injuries such as blisters and pressure ulcers, frequently reported in athletes, military personnel, and in people with compromised skin conditions and/or immobility. Textiles next to skin govern the skin microclimate, have the potential to influence the mechanical contact with skin, and contribute to skin comfort and health. The adhesion-friction theory suggests that contact area is a critical factor to influence adhesion, and therefore, friction force. https://www.selleckchem.com/products/2-Methoxyestradiol(2ME2).html Friction being a surface phenomenon, most of the studies concentrated on the surface profile or topographic analysis of textiles. This study investigated both the surface profiles and the inner construction of the fabrics through X-ray microcomputed tomographic three-dimensional image analysis. A novel nondestructive method to evaluate yarn and fabric structural details quantitatively and calculate contact area (in fiber area %) experimentally has been reported in this paper.