climate change adaptation do not reinforce or exacerbate potentially existing environmental injustices.The hierarchically bicontinuous polystyrene monoliths (HBPMs) with homogeneous skeletons and glycopolymer surfaces are fabricated for the first time based on the medium internal phase emulsion (MIPE) templating method via activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP). The synergistic self-assembly of amphiphilic diblock glycopolymer (ADG) and Pluronic F127 (PF127) at the oil/water interface via hydrogen bonding interaction contributes to the formation of bicontinuous MIPE with deformed neighboring water droplets, resulting in the highly interconnected HBPM after polymerization. There is a bimodal pore size distribution in the HBPM, that is, through pores (150-5000 nm) and mesopores (10-150 nm). The HBPMs as prepared show excellent biocompatibility, homogeneous skeletons, strong mechanical strength, and high bed permeability, overcoming the practical limitations of the second generation of polystyrene (PS) monoliths. Glycoprotein concanavalin A (Con A) can be easily and quickly separated by the HBPM in hydrophilic interaction chromatography (HILIC) mode. These results suggest the HBPMs have great potentials in catalysis, separations, and biomedical applications. Severe hypocalcaemia is associated with increased transfusion in the trauma population. Furthermore, trauma patients developing severe hypocalcaemia have higher mortality and coagulopathy. Electrolyte abnormalities associated with massive transfusion have been less studied in the surgical population. Here, we tested the primary hypothesis that volume of packed red blood cells and fresh frozen plasma transfused intraoperatively is associated with lower nadir ionised calcium in the surgical population receiving massive resuscitation. We performed a retrospective observational study at an academic quaternary care centre to characterise hypocalcaemia following large volume (4 or more units packed red blood cells) intraoperative transfusion. We used multivariable linear regression to assess if volume of transfusion with packed red blood cells and fresh frozen plasma were independently associated with a lower ionised calcium. We then used multivariable logistic regressions to assess the association between ionilcaemia was associated with increased transfusion volume in this single-centre study. Unlike the trauma population, hypocalcaemia was not associated with increased mortality during surgical care. Our findings suggest that despite improved practice patterns of calcium supplementation, intraoperative hypocalcaemia occurs with relatively high frequency following large volume intraoperative transfusion.Polyaddition via the Co-catalyzed hydroarylation of 1-(2-pyrimidinyl)pyrrole with aromatic diynes affords poly(arylenevinylene)s under mild conditions. This reaction avoids production of stoichiometric amounts of by-products. Although structural analysis of the obtained polymers reveals the presence of 1,1-vinylidene unit, switching the counter anion of the Co catalyst and steric hindrance of the diyne monomers improves the regioselectivity of the polymers. When a catalyst with bulky counter anions is used for the reaction of less hindered diyne monomers, 1,2-vinylene linkages are formed dominantly over 1,1-vinylidene linkages (937). The effect of the regioselectivity of the polymer on the optical and semiconducting properties is also evaluated.Various ligation processes have recently become a powerful tool in synthetic polymer chemistry. Herein, the use of a new photochemical ligation process as a versatile approach for the cross-linking polymerization, functionalization of polymer chain ends, and surface modification of various materials such as silica and graphene oxide, is demonstrated. The process is based on the formation of urethane linkages by the reaction of photochemically in situ generated isocyanates from benzoyl azides with hydroxyl moieties in the presence of organobase, bicyclo[2.2.2]-1,4-diazaoctane (DABCO) under ambient conditions. The intermediates and obtained materials are characterized by NMR, FTIR, TGA, and TEM analyses. It is believed that this simple and efficient ligation process will expand future applications to fabricate complex macromolecular structures, biomaterials, and gels.The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). https://www.selleckchem.com/products/fx11.html We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (-18 to -41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150-200 µS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 µS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.