https://www.selleckchem.com/products/pf-07265807.html The reduction of grain yield was less with higher AMF colonization. Plants with higher AMF colonization showed higher leaf P concentrations than plants with lower colonization in Expt 1, but not in Expt 2. Plants with higher AMF colonization exhibited higher stomatal conductance and chlorophyll fluorescence than plants with lower colonization, especially under drought. Drought increased the levels of ABA and IAA, and AMF colonization also resulted in higher levels of IAA. The results suggest both nutrient-driven and plant hormone-driven pathways through which AMF confer drought tolerance to rice.Arbuscular mycorrhizal (AM) symbiosis plays crucial roles in plant nutrient uptake. However, little is known about the combined effects of phosphorus (P) and magnesium (Mg) on mycorrhizal symbiosis. In the present study, a pot experiment was carried out using two soybean genotypes in the presence or absence of Rhizophagus irregularis inoculation under different P and Mg conditions. The results showed that plant growth promotion by mycorrhizal symbiosis was associated with P-starved nutrition status, high Mg supply augmented the efficiency of AM symbiosis in low P, and high Mg relieved the inhibitory effect of high P availability on AM symbiosis. The P-efficient genotype HN89 was more responsive to Mg application than the P-inefficient genotype HN112 when inoculated with Rhizophagus irregularis. The results from a comparative RNA sequencing analysis of the root transcriptomes showed that several carbon metabolism pathways were enriched in mycorrhizal roots in low P plus high Mg. Accordingly, the expression levels of the key genes related to carbon metabolism and transport were also upregulated in mycorrhizal roots. Conversely, the Mg-deficient mycorrhizal plants showed increased sucrose, glucose, and fructose accumulations in shoots. Overall, the results herein demonstrate that P and Mg interactively affect mycorrhizal res