β-cell replacement therapy (βCRT), including pancreas transplantation alone (PTA) and islet transplantation (ITX), is a treatment option for selected type 1 diabetes patients. All potential candidates for βCRT in Norway are referred to one national transplant centre for evaluation before any pre-transplant workup is started. This evaluation was performed by a transplant nephrologist alone prior to 2015 and by a multidisciplinary team (MDT) from 2015. We have reviewed the allocation of patients to treatment modality and the 1-year clinical outcome for the patients after transplantation. Medical charts of all patients evaluated for βCRT between 2010 and 2020 in Norway were retrospectively analysed and the outcome of patients receiving βCRT were studied. One hundred and forty-four patients were assessed for βCRT eligibility between 2010 and 2020. After MDT evaluation was introduced for βCRT eligibility in 2015, the percentage of referred patients accepted for the transplant waiting list fell from 84% to 40% (P < 0.005). One year after transplantation, 73% of the PTA and none of the ITX patients were independent of exogenous insulin, 8% of the PTA and 90% of the ITX patients had partial graft function while 19% of the PTA and 10% of the ITX patients suffered from graft loss. The acceptance rate for βCRT was significantly reduced during a 10-year observation period and 81% of the PTA and 90% of the ITX patients had partial or normal graft function 1 year post-transplant. The acceptance rate for βCRT was significantly reduced during a 10-year observation period and 81% of the PTA and 90% of the ITX patients had partial or normal graft function 1 year post-transplant. Health information technology (HIT) has been widely adopted in hospital settings, contributing to improved patient safety. However, many types of medical errors attributable to information technology (IT) have negatively impacted patient safety. The continued occurrence of many errors is a reminder that HIT software testing and validation is not adequate in ensuring errorless software functioning within the health care organization. This pilot study aims to classify technology-related medical errors in a hospital setting using an expanded version of the sociotechnical framework to understand the significant differences in the perceptions of clinical and technology stakeholders regarding the potential causes of these errors. https://www.selleckchem.com/products/oxidopamine-hydrobromide.html The paper also provides some recommendations to prevent future errors. Medical errors were collected from previous studies identified in leading health databases. From the main list, we selected errors that occurred in hospital settings. Semistructured interviews with 5 medical and 6chnical framework and their interplay with other dimensions can guide the choice of ways to address medical errors. These findings lead us to conclude that designers need not only a high degree of HIT know-how but also a strong understanding of the medical processes and contextual factors. Although software development teams have historically included clinicians as business analysts or subject matter experts to bridge the gap, development teams will be better served by more immersive exposure to clinical environments, leading to better software design and implementation, and ultimately to enhanced patient safety. Understanding how people with diabetes seek online health information and use health applications is important to ensure these electronic tools are successfully supporting patient self-care. Furthermore, identifying the relationship between patient mobile eHealth literacy (mobile eHL) and diabetes outcomes can have far-reaching utility, for example, in the design of targeted interventions to address mobile eHL limitations. However, only limited studies have explored the impact of mobile eHL in a population with diabetes. This study aims to present data about online information-seeking behavior and mobile health (mHealth) app usage, investigate the factors related to mobile eHL in Taiwanese patients with type 2 diabetes, and flesh out the relationship between eHealth literacy (eHL), mobile health literacy (mHL), and health outcomes. Subjects were recruited from January 2017 to December 2017 in the outpatient departments of 3 hospitals in Taiwan. A total of 249 Taiwanese patients with diabetes voluntarily and technology, few adopted these tools in their daily lives. The study found that mobile eHL had a direct effect on self-care behavior as well as knowledge and skills of computers, the internet, and mobile technology, and had an indirect effect on health outcomes (glycemic control and self-rated health status). Information about this population's experiences and the role mobile eHL plays in them can spur necessary mobile eHealth patient education. Elevated cardiac troponin, which indicates cardiomyocyte injury, is common after acute ischemic stroke and is associated with poor functional outcome. Myocardial injury is part of a broad spectrum of cardiac complications that may occur after acute ischemic stroke. Previous studies have shown that in most patients, the underlying mechanism of stroke-associated myocardial injury may not be a concomitant acute coronary syndrome. Evidence from animal research and clinical and neuroimaging studies suggest that functional and structural alterations in the central autonomic network leading to stress-mediated neurocardiogenic injury may be a key underlying mechanism (ie, stroke-heart syndrome). However, the exact pathophysiological cascade remains unclear, and the diagnostic and therapeutic implications are unknown. The aim of this CORONA-IS (Cardiomyocyte injury following Acute Ischemic Stroke) study is to quantify autonomic dysfunction and to decipher downstream cardiac mechanisms leading to myocardial injury low-up for cardiovascular events will be conducted 3 and 12 months after inclusion. After a 4-month pilot phase, recruitment began in April 2019. We estimate a recruitment period of approximately 3 years to include 300 patients with a complete cardiovascular MRI protocol. Stroke-associated myocardial injury is a common and relevant complication. Our study has the potential to provide a better mechanistic understanding of heart and brain interactions in the setting of acute stroke. Thus, it is essential to develop algorithms for recognizing patients at risk and to refine diagnostic and therapeutic procedures. Clinicaltrials.gov NCT03892226; https//www.clinicaltrials.gov/ct2/show/NCT03892226. DERR1-10.2196/24186. DERR1-10.2196/24186.