https://www.selleckchem.com/products/pf-8380.html Transcranial high-intensity focused ultrasound is used in clinics for treating essential tremor (ET) and proposed for many other brain disorders. This promising treatment modality requires high energy resulting eventually in undesired cavitation and potential side effects. The goals of the present work were 1) to evaluate the potential increase of the cavitation threshold using pseudorandom gated sonications and 2) to assess the heating capabilities with such sonications. The experiments were performed with the transcranial magnetic resonance (MR)-compatible ExAblate Neuro system (InSightec, Haifa, Israel) operating at a frequency of 670 kHz, either in continuous wave (CW) or with pseudorandom gated sonications of 50% duty cycle. Cavitation activity with the two types of sonications was compared using chemical dosimetry of hydroxyl radical production at the focus of the transducer, after propagation in water or through a human skull. Heating trials were performed in a hydrogel tissue-mimicking material embeddility was not affected by the gated sonications, and similar temperature increases were reached at focus with both types of sonications when sonicating at equivalent acoustic power, both in water or after propagation through a human skull (+15 °C at 325 W for 10 s). These data, acquired with a clinical system, suggest that gated sonication could be an alternative to continuous sonications when cavitation onset is an issue.Suboptimal interaction with patient data and challenges in mastering 3D anatomy based on ill-posed 2D interventional images are essential concerns in image-guided therapies. Augmented reality (AR) has been introduced in the operating rooms in the last decade; however, in image-guided interventions, it has often only been considered as a visualization device improving traditional workflows. As a consequence, the technology is gaining minimum maturity that it requires to redefine new procedures, u