https://www.selleckchem.com/products/kd025-(slx-2119).html Nanopore sequencing is rapidly becoming more popular for use in various microbiota-based applications. Major limitations of current approaches are that they do not enable de novo species identification and that they cannot be used to verify species assignments. This severely limits applicability of the nanopore sequencing technology in taxonomic applications. Here, we demonstrate the possibility of de novo species identification and verification using hexamer frequencies in combination with k-means clustering for nanopore sequencing data. The approach was tested on the human infant gut microbiota of 3-month-old infants. Using the hexamer k-means approach we identified two new low abundant species associated with vaginal delivery. In addition, we confirmed both the vaginal delivery association for two previously identified species and the overall high levels of bifidobacteria. Taxonomic assignments were further verified by mock community analyses. Therefore, we believe our de novo species identification approach will have widespread application in analyzing microbial communities in the future.Heat shock proteins (Hsps) play an important role in many biological processes. However, as a typical cold water fish, the systematic identification of Hsp70/110 gene family of rainbow trout (Oncorhynchus mykiss) has not been reported, and the role of Hsp70/110 gene in the evolution of rainbow trout has not been described systematically. In this study, bioinformatics methods were used to analyze the Hsp70/110 gene family of rainbow trout. A total of 16 hsp70/110 genes were identified and classified into ten subgroups. The 16 Hsp70/110 genes were all distributed on chromosomes 2, 4, 8 and 13. The molecular weight is ranged from 78.93 to 91.39 kD. Gene structure and motif composition are relatively conserved in each subgroup. According to RNA-seq analysis of rainbow trout liver and head kidney, a total of four out of 16 ge