Female puberty is subject to Polycomb Group (PcG)-dependent transcriptional repression. Kiss1, a puberty-activating gene, is a key target of this silencing mechanism. Using a gain-of-function approach and a systems biology strategy we now show that EED, an essential PcG component, acts in the arcuate nucleus of the hypothalamus to alter the functional organization of a gene network involved in the stimulatory control of puberty. A central node of this network is Kdm6b, which encodes an enzyme that erases the PcG-dependent histone modification H3K27me3. Kiss1 is a first neighbor in the network; genes encoding glutamatergic receptors and potassium channels are second neighbors. By repressing Kdm6b expression, EED increases H3K27me3 abundance at these gene promoters, reducing gene expression throughout a gene network controlling puberty activation. These results indicate that Kdm6b repression is a basic mechanism used by PcG to modulate the biological output of puberty-activating gene networks.Growth hormone (GH) secretion is related to many factors, such as weight and puberty, and the reproducibility of GH provocation tests is very poor. This study aimed to evaluate whether the triglyceride (TyG) index was associated with peak GH in children with short stature. This study included 1095 children with short stature divided into two groups based on peak GH level in GH provocation tests [GH deficiency (GHD) group = 733 children; non-GHD group = 362 children]. We found that the TyG index was significantly higher in the GHD group than in the non-GHD group (P  less then  0.001). A nonlinear relationship was detected between the TyG index and peak GH, whose point was 7.8. A significant negative association between the TyG index and peak GH was observed when the TyG index was greater than 7.8 (β - 2.61, 95% CI - 3.98, - 1.24; P  less then  0.001), whereas, the relationship between the TyG index and peak GH was not significant when the TyG index was lower than 7.8 (β 0.25, 95% CI - 1.68, 2.17; P = 0.799). There is a nonlinear relationship between the TyG index and peak GH, and a higher TyG index is associated with decreased peak GH in children with short stature.Iron (Fe) is well known as a limiting factor to control primary productivity especially in high-nutrient and low chlorophyll area such as the subarctic Pacific. The solubility of Fe is believed to be controlled by its complexation with natural organic ligands, while the distribution of organic ligands is poorly understood. Here, we report that dissolved ( less then  0.2 µm) organic ligands were unevenly distributed between the western and eastern stations in the subarctic Pacific. The concentration of dissolved organic ligands around the lower part of subarctic Pacific intermediate water was higher in the western station, suggesting that Fe complexation with these organic ligands supports a lateral transport within the water mass. However, a more detailed size-fractionated treatment indicated no significant difference in the soluble ( less then  1000 kDa) ligands' distribution between the western and eastern stations. These results suggest that organic and inorganic colloid formations are potentially essential for Fe transport mechanisms in the subarctic Pacific.A simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42-7.6 GHz and 13-13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.The abnormal lattice expansion of commercial polypropylene (PP)/polyethylene (PE)/polypropylene (PP) separator in lithium-ion battery under different charging current densities was observed by in-situ X-ray diffraction. Significant lattice changes of both PP and PE were found during the low current density charging. The capacity fading and the resistance value of the cell measured at 0.025 C (5th retention, 92%) is unexpectedly larger than that at 1.0 C (5th retention, 97.3%) from the electrochemical impedance spectroscopic data. High-resolution scanning electron microscopy is employed to witness the pore changes of the trilayered membrane. Density functional theory calculations were used to investigate the mechanism responsible for the irregular results. The calculations revealed that the insertion of Li-ion and EC molecule into PP or PE are thermodynamically favourable process which might explain the anomalous significant lattice expansion during the low current density charging. Therefore, designing a new separator material with a more compact crystalline structure or surface modification to reduce the Li insertion during the battery operation is desirable.Tremendous advancements in cell and protein engineering methodologies and bioinformatics have led to a vast increase in bacterial production clones and recombinant protein variants to be screened and evaluated. Consequently, an urgent need exists for efficient high-throughput (HTP) screening approaches to improve the efficiency in early process development as a basis to speed-up all subsequent steps in the course of process design and engineering. In this study, we selected the BioLector micro-bioreactor (µ-bioreactor) system as an HTP cultivation platform to screen E. coli expression clones producing representative protein candidates for biopharmaceutical applications. We evaluated the extent to which generated clones and condition screening results were transferable and comparable to results from fully controlled bioreactor systems operated in fed-batch mode at moderate or high cell densities. Direct comparison of 22 different production clones showed great transferability. https://www.selleckchem.com/ We observed the same growth and expression characteristics, and identical clone rankings except one host-Fab-leader combination.