Finally, two chaotic systems are given to verify the feasibility of the theoretical results.Recent years have witnessed a growing interest in EEG-based wearable classifiers of emotions, which could enable the real-time monitoring of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis (ALS), Autism Spectrum Disorder (ASD), or Alzheimer's. The hope is that such wearable emotion classifiers would facilitate the patients' social integration and lead to improved healthcare outcomes for them and their loved ones. Yet in spite of their direct relevance to neuro-medicine, the hardware platforms for emotion classification have yet to fill up some important gaps in their various approaches to emotion classification in a healthcare context. In this paper, we present the first hardware-focused critical review of EEG-based wearable classifiers of emotions and survey their implementation perspectives, their algorithmic foundations, and their feature extraction methodologies. We further provide a neuroscience-based analysis of current hardware accelerators of emotion classifiers and use it to map out several research opportunities, including multi-modal hardware platforms, accelerators with tightly-coupled cores operating robustly in the near/supra-threshold region, and pre-processing libraries for universal EEG-based datasets.Augmented reality applications use object tracking to estimate the pose of a camera and to superimpose virtual content onto the observed object. Today, a number of tracking systems are available, ready to be used in industrial applications. However, such systems are hard to handle for a service maintenance engineer, due to obscure configuration procedures. In this paper, we investigate options towards replacing the manual configuration process with a machine learning approach based on automatically synthesized data. We present an automated process of creating object tracker facilities exclusively from synthetic data. The data is highly enhanced to train a convolutional neural network, while still being able to receive reliable and robust results during real world applications only from simple RGB cameras. Comparison against related work using the LINEMOD dataset showed that we are able to outperform similar approaches. For our intended industrial applications with high accuracy demands, its performance is still lower than common object tracking methods with manual configuration. Yet, it can greatly support those as an add-on during initialization, due to its higher reliability.Video surveillance and its applications have become increasingly ubiquitous in modern daily life. In video surveillance system, video coding as a critical enabling technology determines the effective transmission and storage of surveillance videos. In order to meet the real-time or time-critical transmission requirements of video surveillance systems, the low-delay (LD) configuration of the advanced high efficiency video coding (HEVC) standard is usually used to encode surveillance videos. The coding efficiency of the LD configuration is closely related to the quantization parameter (QP) cascading technique which selects or determines the QPs for encoding. However, the quantization parameter cascading (QPC) technique currently adopted for the LD configuration in HEVC test model (i.e., HM) is not optimized since it has not taken full account of the reference dependency in coding. In this paper, an efficient QPC technique for surveillance video coding, referred to as QPC-SV, is proposed, considering all inter reference frames under the LD configuration. Experimental results demonstrate the efficacy of the proposed QPC-SV. https://www.selleckchem.com/products/u18666a.html Compared with the default configuration of QPC in the HM, the QPC-SV achieves significant rate-distortion performance gain with average BD-rates of -9.35% and -9.76% for the LDP and LDB configurations, respectively.RGB-thermal salient object detection (SOD) aims to segment the common prominent regions of visible image and corresponding thermal infrared image that we call it RGBT SOD. Existing methods don't fully explore and exploit the potentials of complementarity of different modalities and multi-type cues of image contents, which play a vital role in achieving accurate results. In this paper, we propose a multi-interactive dual-decoder to mine and model the multi-type interactions for accurate RGBT SOD. In specific, we first encode two modalities into multi-level multi-modal feature representations. Then, we design a novel dual-decoder to conduct the interactions of multi-level features, two modalities and global contexts. With these interactions, our method works well in diversely challenging scenarios even in the presence of invalid modality. Finally, we carry out extensive experiments on public RGBT and RGBD SOD datasets, and the results show that the proposed method achieves the outstanding performance against state-of-the-art algorithms. The source code has been released at https//github.com/lz118/Multi-interactive-Dual-decoder.Diversity "multiple description" (MD) source coding promises graceful degradation in the presence of a priori unknown number of erased packets in the channel. A simple coding scheme for the case of two packets consists of oversampling the source by a factor of two and delta-sigma quantization. This approach was applied successfully to JPEG-based image coding over a lossy packet network, where the interpolation and splitting into two descriptions are done in the discrete cosine transform (DCT) domain. Moreover, unlike the classical source-channel separation approach - which is designed for a predetermined number of erasures (say, K out of N ), hence its distortion does not improve when the channel behaves better than expected - an MD coding scheme aims to achieve a better reconstruction quality when more or all the N descriptions are received at the decoder side. The extension to a larger number of descriptions, however, suffers from noise amplification whenever the received descriptions form a non-uniform sampling pattern. In this work, we examine inter- and intra-block interpolation methods, and show how noise amplification can be reduced by redesigning the interpolation filter at the encoder. Specifically, for a given total coding rate, we demonstrate that an "irregular" interpolation filter is robust to the pattern of received packets over all ( K out of N ) patterns, with some degradation relative to low-pass (LP) interpolation in the case where all N packets arrived. We provide experimental results comparing LP and irregular interpolation filters, and examine the effect of noise shaping on the trade-off between the central distortion (receiving all packets) and side distortion (receiving K packets).