In fact, molecular rationale behind Si-mediated heat tolerance in plants is largely unknown. In this minireview, we made efforts to understand the mechanistic aspects of heat-induced responses and damages in plants, and possible molecular dynamics of Si-induced heat tolerance in plants. We also highlighted recent advances on how Si induces heat tolerance potential in plants and future perspectives on how Si can contribute to sustainable crop production under the increasing threat of global climate change.Cytokinin (CK) is an important plant hormone that promotes plant cell division and differentiation, and participates in salt response under osmotic stress. LOGs (LONELY GUY) are CK-activating enzymes involved in CK synthesis. The LOG gene family has not been comprehensively characterized in cotton. In this study we identified 151 LOG genes from nine plant species, including 28 LOG genes in Gossypium hirsutum. Phylogenetic analysis divided LOG genes into three groups. Exon/intron structures and protein motifs of GhLOG genes were highly conserved. Synteny analysis revealed that several gene loci were highly conserved between the A and D sub-genomes of G. hirsutum with purifying selection pressure during evolution. Expression profiles showed that most LOG genes were constitutively expressed in eight different tissues. Furthermore, LOG genes can be regulated by abiotic stresses and phytohormone treatments. Moreover, subcellular localization revealed that GhLOG3_At resides inside the cell membrane. Overexpression of GhLOG3 enhanced salt tolerance in Arabidopsis. Virus-induced gene silencing (VIGS) of GhLOG3_At in cotton enhanced sensitivity of plants to salt stress with increased H2O2 contents and decreased chlorophyll and proline (PRO) activity. Our results suggested that GhLOG3_At induces salt stress tolerance in cotton, and provides a basis for the use of CK synthesis genes to regulate cotton growth and stress resistance.The loss of cropland soils, climate change, and population growth are directly affecting the food supply. Given the higher incidence of salinity and extreme events, the cereal performance and yield are substantially hampered. Wheat is forecast to decline over the coming years due to the salinization widespread as one of the oldest and most environmental severe constraints facing global cereal production. To increase salinity tolerance of wheat, in this study, we developed two new salt-tolerant bread wheats, named 'Maycan' and 'Yıldız'. The salinity tolerance of these lines, their parents, and a salt-sensitive cultivar has been tested from measurements of physiological, biochemical, and genes associated with osmotic adjustment/plant tolerance in cultures containing 0 and 150 mM NaCl at the seedling stage. Differential growth reductions to increased salinity were observed in the salt-sensitive cultivar, with those newly developed exhibiting significantly greater root length, growth of shoot and water content as salinity tolerances overall than their parents. 'Maycan' and 'Yıldız' had higher osmoregulator proline content and antioxidants enzyme activities under salinity than the other bread wheat tested. Notably, an important upregulation in the expression of genes related to cellular ion balance, osmolytes accumulation, and abscisic acid was observed in both new wheat germplasms, which may improve salt tolerance. https://www.selleckchem.com/products/ly2157299.html These finding revealed that 'Maycan' and 'Yıldız' exhibit high-salt tolerance at the seedling stage and differing in their tolerance mechanisms to the other tested cultivars, thereby providing an opportunity for their exploitation as modern bread wheats.Despite the potential of photothermal therapy (PTT) for cancer treatments, PTT alone has limitations in treating metastatic tumors and preventing tumor recurrence, highlighting the need to combine PTT with immunotherapy. This study reports tumor microenvironment (TME)-targeting, near-infrared (NIR) dye derivative-based nanomedicine for effective combined PTT-immunotherapy. Amphiphilic NIR dye cyanine derivatives are used not only for constructing the nanoparticle mass, but also for creating a stable complex with CpG adjuvant; a peptide specific to fibronectin extra domain B (APTEDB) is also introduced as a TME-targeting ligand, yielding the TME-targeting nanomedicine, APTEDB-cyNP@CpG. APTEDB-cyNP@CpG shows cancer-targeting ability in EDB-overexpressing CT26 colon tumor-bearing mice. When combined with laser irradiation, it induces immunogenic cell death (ICD) and subsequently leads to significant increase in CD8+ T cell population in the tumor, resulting in greater antitumor therapeutic efficacy than does cyNP@CpG lacking the TME-targeting ligand. Moreover, the combination of APTEDB-cyNP@CpG-based PTT and an immune checkpoint blockade (ICB) antibody leads to remarkable antitumor efficacy against the laser-irradiated primary tumor as well as distant tumor through potentiation of systemic cancer cell-specific T cell immunity. Furthermore, the PTT-immunotherapy combination regimen is highly effective in inhibiting tumor recurrence and metastasis.Aluminum phosphate adjuvants play a critical role in human inactivated and subunit prophylactic vaccines. However, a major challenge is that the underlying mechanism of immune stimulation remains poorly understood, which impedes the further optimal design and application of more effective adjuvants in vaccine formulations. To address this, a library of amorphous aluminum hydroxyphosphate nanoparticles (AAHPs) is engineered with defined surface properties to explore the specific mechanism of adjuvanticity at the nano-bio interface. The results demonstrate that AAHPs could induce cell membrane perturbation and downstream inflammatory responses, with positively-charged particles showing the most significantly enhanced immunostimulation potentials compared to the neutral or negatively-charged particles. In a vaccine using Staphylococcus aureus (S. aureus) recombinant protein as antigens, the positively-charged particles elicit long-lasting and enhanced humoral immunity, and provide protection in S. aureus sepsis mice models. In addition, when formulated with human papillomavirus type 18 virus-like particles, it is demonstrated that particles with positive charges outperform in promoting serum antigen-specific antibody productions. This study shows that engineering AAHPs with well-controlled physicochemical properties enable the establishment of a structure-activity relationship that is critical to instruct the design of suitable engineered nanomaterial-based adjuvants within vaccine formulations for the benefits of human health.