https://www.selleckchem.com/products/VX-702.html tions with ground truth, indicating that the proposed method and WBUS system has the potential to be an alternative modality for breast screening and density estimation in clinical use. Dyslexia is a disorder of neurological origin which affects the learning of those who suffer from it, mainly children, and causes difficulty in reading and writing. When undiagnosed, dyslexia leads to intimidation and frustration of the affected children and also of their family circles. In case no early intervention is given, children may reach high school with serious achievement gaps. Hence, early detection and intervention services for dyslexic students are highly important and recommended in order to support children in developing a positive self-esteem and reaching their maximum academic capacities. This paper presents a new approach for automatic recognition of children with dyslexia using functional magnetic resonance Imaging. Our proposed system is composed of a sequence of preprocessing steps to retrieve the brain activation areas during three different reading tasks. Conversion to Nifti volumes, adjustment of head motion, normalization and smoothing transformations were performed on the fMRI scd functional magnetic resonance Imaging when performing phonological and orthographic reading tasks. The proposed system has demonstrated that the recognition of dyslexic children is feasible using deep learning and functional magnetic resonance Imaging when performing phonological and orthographic reading tasks. The precise radiomics analysis on thoracic 4DCT data is easily compromised by the respiratory motion and CT scan parameter setting, thus leading to the risk of overfitting and/or misinterpretation of data in AI-enabled therapeutic model building. In this study, we investigated the impact of respiratory amplitudes, frequencies and CT scan pitch settings within the thoracic 4DCT scan on robust radiomics feature selection. A Thre