https://www.selleckchem.com/products/GDC-0941.html Memristive crossbar architectures are evolving as powerful in-memory computing engines for artificial neural networks. However, the limited number of non-volatile conductance states offered by state-of-the-art memristors is a concern for their hardware implementation since trained weights must be rounded to the nearest conductance states, introducing error which can significantly limit inference accuracy. Moreover, the incapability of precise weight updates can lead to convergence problems and slowdown of on-chip training. In this article, we circumvent these challenges by introducing graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states. We also show desirable retention and programming endurance. Finally, we demonstrate that graphene memristors enable weight assignment based on k-means clustering, which offers greater computing accuracy when compared with uniform weight quantization for vector matrix multiplication, an essential component for any artificial neural network.Digital pathology enables computational analysis algorithms to be applied at scale to histological images. An example is the identification of immune cells within solid tumours. Image analysis algorithms can extract precise cell locations from immunohistochemistry slides, but the resulting spatial coordinates, or point patterns, can be difficult to interpret. Since localisation of immune cells within tumours may reflect their functional status and correlates with patient prognosis, novel descriptors of their spatial distributions are of biological and clinical interest. A range of spatial statistics have been used to analyse such point patterns but, individually, these approaches only partially describe complex immune cell distributions. In this study, we apply three spatial statistics to locations of CD68+ macrophages within human head and neck tumours, and show that images grouped