https://www.selleckchem.com/products/Rapamycin.html In recent years, microarray technology and gene expression profiles have been widely used to detect, predict, or classify the samples of various diseases. The presence of large genes in these profiles and the small number of samples are known challenges in this field and are widely considered in previous papers. In previous studies, other topics such as the noise of microarray data or the dependence of selected genes on samples have been less considered. Therefore, we have tried to address these two issues by using a fuzzy classifier and stability index of selected genes, respectively. The proposed method is based on the regression function between the genes and class labels which is determined by the self-representing method. This regression function is determined individually for each class of the database. To minimize the effect of noise in microarray data, a fuzzy classifier is applied in the proposed model. Four databases of gene expression profiles are examined in this article, and the results indicate that the proposed model has a relative advantage over the previous methods. Graphical abstract.Narrow-band imaging (NBI) laryngoscopy is an optical-biopsy technique used for screening and diagnosing cancer of the laryngeal tract, reducing the biopsy risks but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to develop a deep-learning-based strategy for the automatic selection of informative laryngoscopic-video frames, reducing the amount of data to process for diagnosis. The strategy leans on the transfer learning process that is implemented to perform learned-features extraction using six different convolutional neural networks (CNNs) pre-trained on natural images. To test the proposed strategy, the learned features were extracted from the NBI-InfFrames dataset. Support vector machines (SVMs) and CNN-based approach were then used to class