https://www.selleckchem.com/products/Trichostatin-A.html Alzheimer's disease (AD) is a type of progressive neurodegenerative disease, and amyloid β-protein 42 (Aβ42) serves an important role in the pathological process of development of AD. Paired immunoglobulin-like receptor B (PirB) is a functional receptor for myelin inhibitors of neuron regeneration in the CNS, and it has also been identified to function as a high-affinity receptor for Aβ. Here, we used a phage display to identify a specific PirB antagonist peptide 11(PAP11, PFRLQLS), which could reverse Aβ42-induced neurotoxicity and promote neurite outgrowth in vitro. Immunofluorescence analysis showed that PAP11 colocalized with PirB on the membrane of cortical neurons. Horseradish peroxidase-streptavidin-biotin assay further proved that PAP11 directly binds to PirB and the dissociation constant (Kd) was 0.128μM. PAP11 functionally antagonized the neurite outgrowth inhibitory effect induced by Aβ42 in cortical neurons, and the underlying mechanism was associated with a PirB-ROCK2/CRMP2 signaling pathway. The novel PirB antagonist peptide PAP11 may be a promising candidate therapeutic agent for the treatment of AD and other neurodegenerative diseases. KEY POINTS • PAP11 was the first PirB antagonist peptide screened by phage display technology. • PAP11 could protect neurons by blocking the binding of Aβ42 and PirB. • PAP11 reverse inhibitory effect of neurite outgrowth through ROCK2/CRMP2 pathway.Currently, the lack of reliable strategies for the diagnosis and treatment of cancer makes the identification and characterization of new therapeutic targets a pressing matter. Several studies have proposed the Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) as a promising therapeutic target for prostate cancer. Although structural and functional studies may provide deeper insights on the role of STEAP1 in cancer, such techniques require high amounts of purified protein through biotechnological process