The recovery and separation of rare earth elements (REEs) are of national importance owing to the specific usages, high demand, and low supply of these elements. In this research, we have investigated the adsorption of rare earth elements onto DNA-functionalized mesoporous carbons with a BET surface area of 605 m2/g and a median mesopore width of 48 Å. Three types of single-stranded DNA, one with 100 base units of thymine, another with 20 units of thymine, and the third, a 2000 unit long DNA from salmon milt were grafted on the carboxylated mesoporous carbon surface. All of the DNA-functionalized mesoporous carbons demonstrated higher adsorption of REEs compared to pristine mesoporous carbon and DNA grafted with 100 units of thymine demonstrated slightly higher adsorbed amounts compared to others. Pure neodymium (Nd(III)) adsorption in the aqueous phase demonstrated an adsorbed amount of 110.4 mg/g with respect to the initial concentration of 500 mg/g. A pH variation study with pure Nd(III) demonstrated that the adsorbed amount is higher at elevated pH compared to that at lower pH, thereby suggesting possible recovery at lower pH. Adsorption of a mixture of 16 REEs, including Sc, Lu, Tm, Yb, Er, Ho, Tb, Dy, Y, Eu, Gd, Sm, Ce, Nd, Pr, and La revealed that the adsorbed amount increased with an increase in the atomic weight and metallic radii of elements within the lanthanides. The calculation of the distribution coefficients for all of the equilibrium adsorption amounts suggested that adsorption is more effective in the lower concentration region. The Nd L3-edge X-ray absorption near edge structure (XANES) confirmed a 3+ oxidation state of Nd in the adsorbed phase. The extended X-ray absorption fine structure (EXAFS) confirmed the local atomic structure relaxation of Nd complexes in the adsorbed phase and shortening of the Nd-O bond distance by about 0.03-0.04 Å, which may be associated with their local complexation at the carbon surface.Perfluoroalkyl acids (PFAAs) are persistent organic substances that have been widely detected in the global oceans. Previous laboratory experiments have demonstrated effective enrichment of PFAAs in nascent sea spray aerosols (SSA), suggesting that SSA are an important source of PFAAs to the atmosphere. In the present study, the effects of the water concentration of PFAAs on their size-resolved enrichment in SSA were examined using a sea spray simulation chamber. Aerosolization of the target compounds in almost all sizes of SSA revealed a strong linear relationship with their water concentrations (p 0.8), but not in submicron particles. The different enrichment behaviors of PFAAs in submicron and supermicron particles might be a result of the different production mechanisms of film droplets and jet droplets. The results suggest that the variability in seawater concentrations of PFAAs has little influence on EFs and that modeling studies designed to quantify the source of PFAAs via SSA emissions do not need to consider this factor.Chitosan (CS) is a natural polysaccharide, widely studied in the past due to its unique properties such as biocompatibility, biodegradability and non-toxicity. Chemical modification of CS is an effective pathway to prepare new matrices with additional functional groups and improved properties, such as increment of hydrophilicity and swelling rate, for drug delivery purposes. https://www.selleckchem.com/products/MLN-2238.html In the present study, four derivatives of CS with trans-aconitic acid (t-Acon), succinic anhydride (Succ), 2-hydroxyethyl acrylate (2-HEA) and acrylic acid (AA) were prepared, and their successful grafting was confirmed by FTIR and 1H-NMR spectroscopies. Neat chitosan and its grafted derivatives were fabricated for the encapsulation of fluticasone propionate (FLU) and salmeterol xinafoate (SX) drugs, used for chronic obstructive pulmonary disease (COPD), via the ionotropic gelation technique. Scanning electron microscopy (SEM) micrographs demonstrated that round-shaped microparticles (MPs) were effectively prepared with average sizes ranging between 0.4 and 2.2 μm, as were measured by dynamic light scattering (DLS), while zeta potential verified in all cases their positive charged surface. FTIR spectroscopy showed that some interactions take place between the drugs and the polymeric matrices, while X-ray diffraction (XRD) patterns exhibited that both drugs were encapsulated in MPs' interior with a lower degree of crystallinity than the neat drugs. In vitro release studies of FLU and SX exposed a great amelioration in the drugs' dissolution profile from all modified CS's MPs, in comparison to those of neat drugs. The latter fact is attributed to the reduction in crystallinity of the active substances in the MPs' interior.Centromere integrity underlies an essential framework for precise chromosome segregation and epigenetic inheritance. Although centromeric DNA sequences vary among different organisms, all eukaryotic centromeres comprise a centromere-specific histone H3 variant, centromeric protein A (CENP-A), on which other centromeric proteins assemble into the kinetochore complex. This complex connects chromosomes to mitotic spindle microtubules to ensure accurate partitioning of the genome into daughter cells. Overexpression of CENP-A is associated with many cancers and is correlated with its mistargeting, forming extra-centromeric kinetochore structures. The mislocalization of CENP-A can be counteracted by proteolysis. The amino (N)-terminal domain (NTD) of CENP-A has been implicated in this regulation and shown to be dependent on the proline residues within this domain in Saccharomyces cerevisiae CENP-A, Cse4. We recently identified a proline-rich GRANT motif in the NTD of Schizosaccharomyces pombe CENP-A (SpCENP-A) thathus exposing it to protein turnover. Taken together, we show that the NTD is not required to confer SpCENP-A protein turnover.The aim of this study was to compare the chemical composition, as well as antioxidant, anti-inflammatory, antiacne, and cytotoxic activites of various extracts of Cephalaria gigantea and C. uralensis. It is worth underlining that we are the first to characterize the composition and evaluate the biological properties of extracts from Cephalaria gigantea and C. uralensis. Thus, the LC-DAD-MS3 analysis revealed the presence of 41 natural products in studied extracts. The 5-O-caffeoylquinic acid, isoorinetin, and swertiajaponin were the main detected compounds. Among the tested samples, ethanol extract of the aerial parts of C. uralensis (CUE) possessed the most suitable biological properties. It exhibited moderate ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, as well as cyclooxygenase-2. Moreover, CUE possessed moderate antibacterial activity against all tested bacterial strains (S. aureus, S. epidermidis, and P. acnes), and importantly, it was non-toxic towards normal skin fibroblasts.