https://www.selleckchem.com/products/r-hts-3.html Strong antiferromagnetic correlations are only found along the b-axis, and our results hence unify the pictures seen by neutron scattering and macroscopic physical property measurements.Simulations on Bloch surface waves and Bloch surface wave-exciton-polaritons based on the transfer matrix method were performed using only the layer thicknesses and refractive indices of the materials. We demonstrate that the incorporation of the influence of active layer is necessary to accurately determine the Bloch surface wave dispersion. Furthermore, the mode splitting that gives rise to the lower and upper polariton branches can be simulated by including the full dispersive refractive index of the active layer in the transfer matrix calculation. We show the dependence of coupling strength on active layer and truncation layer thicknesses, which implies that the Bloch surface wave-exciton interaction strength can be tuned just by changing these structural parameters. Furthermore, we calculate the area inside the dips corresponding to the lower and upper polariton modes, which can serve as an indicator of mode visibility. We find that in the Kretschmann-Raether configuration, a tradeoff between high Rabi splitting and good mode visibility must be taken into account in designing multilayer structures for Bloch surface wave-exciton-polaritons. Angle-resolved reflectivity maps were also calculated to illustrate how these results can be observed in an experimental set-up. This work serves as a guide map in the design and potential optimization of multilayer structures for the study of two-dimensional polaritonic systems.We propose a thermodynamic model to the study the antiferroelectric (AFE) phase transitions in antiferroelectric-ferroelectric (AFE-FE) superlattices in which the coupling at the interface between two layers is mediated by local polarizations. Phase diagram of the AFE layer in term of the degree of interfacial effect λ