Neutrophil gelatinase-associated lipocalin (NGAL) and interleukins (IL) have a leading role in diagnosing and differentiating UTIs based on a lot of observational, comparative trials. Heparin Binding Protein (HBP), Lactoferrin (LF), Heat-Shock Protein-70 (HSP-70), Human Defensin-5 (HD-5), Lipopolysaccharide Binding Protein (LBP) and mass spectrometry studies are promising, but confirming data are lacking. The measurable components of the innate immune system and local host cell response could be appropriate biomarkers, but their significance is currently unknown. Conclusions Conventional biomarkers for UTIs have low specificity. The use of urinary NGAL and interleukins could improve the sensitivity and specificity of laboratory diagnosis of UTIs.The case of a 32-year-old woman is reported, who was affected by a persisting wound infection caused by Photobacterium damselae after an accident in the Mediterranean Sea. Besides the clinical case, microbiological characteristics based on the phenotypic and genotypic description of the isolate (including whole genome data) are presented and discussed.Severe kyphotic deformity in patients with ankylosing spondylitis can be corrected surgically to achieve a better spinal alignment and an improved visual axis. https://www.selleckchem.com/products/BIBF1120.html Different surgical techniques are used today depending on the extent of ossification and the degree of kyphosis. It is well known that the underlying disease leads to distinct biomechanical changes of the spinal column causing an increased fracture risk especially in case of minor trauma. This includes manipulations during surgical procedures as well as during the required perioperative measures. We present the case of a 45-year-old patient with severe global kyphotic deformity due to ankylosing spondylitis. During the elective corrective surgery (pedicle subtraction osteotomy at the level of L3) the patient sustained a spontaneous fracture at L2/3. This fortunately nondisplaced wedge-shaped fracture in the sense of a Smith-Peterson osteotomy led to a spontaneous correction of the kyphosis. The described unexpected event required a change in the surgical strategy. Correction could be achieved using a two-stage surgical procedure without further drawbacks for the patient. This case report stresses the need of particular attention regarding the increased susceptibility of the spinal column in case of ankylosing spondylitis.Two platinum precursors, Pt(CO)2Cl2 and Pt(CO)2Br2, were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a scanning electron microscope (SEM), wherein series of pillars were successfully grown from both precursors. The growth of the pillars was studied as a function of the electron dose and compared to deposits grown from the commercially available precursor MeCpPtMe3. The composition of the deposits was determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe3, as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO)2Cl2 compared to MeCpPtMe3. However, deposits made from Pt(CO)2Br2 show slightly less metal content and a lower growth rate compared to MeCpPtMe3. With both Pt(CO)2Cl2 and Pt(CO)2Br2, a marked difference in composition was found between deposits made in the SEM and deposits made in UHV. In addition to Pt, the UHV deposits contained halogen species and little or no carbon, while the SEM deposits contained only small amounts of halogen species but high carbon content. Results from this study highlight the effect that deposition conditions can have on the composition of deposits created by FEBID.This work is a study of the formation processes and the effect of related process parameters of multilayer nanosystems and devices for spintronics. The model system is a superconducting spin valve, which is a multilayer structure consisting of ferromagnetic cobalt nanolayers separated by niobium superconductor nanolayers. The aim was to study the influence of the main technological parameters including temperature, concentration and spatial distribution of deposited atoms over the nanosystem surface on the atomic structure and morphology of the nanosystem. The studies were carried out using the molecular dynamics method using the many-particle potential of the modified embedded-atom method. In the calculation process the temperature was controlled using the Nose-Hoover thermostat. The simulation of the atomic nanolayer formation was performed by alternating the directional deposition of different composition layers under high vacuum and stationary temperature conditions. The structure and thickness of the formed nanolayers and the distribution of elements at their interfaces were studied. The alternating layers of the formed nanosystem and their interfaces are shown to have significantly different atomic structures depending on the main parameters of the deposition process.This work addresses the need for a comprehensive methodology for nanoscale electrical testing dedicated to the analysis of both "front end of line" (FEOL) (doped semiconducting layers) and "back end of line" (BEOL) layers (metallization, trench dielectric, and isolation) of highly integrated microelectronic devices. Based on atomic force microscopy, an electromagnetically shielded and electrically conductive tip is used in scanning microwave impedance microscopy (sMIM). sMIM allows for the characterization of the local electrical properties through the analysis of the microwave impedance of the metal-insulator-semiconductor nanocapacitor (nano-MIS capacitor) that is formed by tip and sample. A highly integrated monolithic silicon PIN diode with a 3D architecture is analysed. sMIM measurements of the different layers of the PIN diode are presented and discussed in terms of detection mechanism, sensitivity, and precision. In the second part, supported by analytic calculations of the equivalent nano-MIS capacitor, a new multidimensional approach, including a complete parametric investigation, is performed with a dynamic spectroscopy method.